IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002685.html
   My bibliography  Save this article

Mechanism of Bacterial Signal Transduction Revealed by Molecular Dynamics of Tsr Dimers and Trimers of Dimers in Lipid Vesicles

Author

Listed:
  • Benjamin A Hall
  • Judith P Armitage
  • Mark S P Sansom

Abstract

Bacterial chemoreceptors provide an important model for understanding signalling processes. In the serine receptor Tsr from E. coli, a binding event in the periplasmic domain of the receptor dimer causes a shift in a single transmembrane helix of roughly 0.15 nm towards the cytoplasm. This small change is propagated through the ∼22 nm length of the receptor, causing downstream inhibition of the kinase CheA. This requires interactions within a trimer of receptor dimers. Additionally, the signal is amplified across a 53,000 nm2 array of chemoreceptor proteins, including ∼5,200 receptor trimers-of-dimers, at the cell pole. Despite a wealth of experimental data on the system, including high resolution structures of individual domains and extensive mutagenesis data, it remains uncertain how information is communicated across the receptor from the binding event to the downstream effectors. We present a molecular model of the entire Tsr dimer, and examine its behaviour using coarse-grained molecular dynamics and elastic network modelling. We observe a large bending in dimer models between the linker domain HAMP and coiled-coil domains, which is supported by experimental data. Models of the trimer of dimers, built from the dimer models, are more constrained and likely represent the signalling state. Simulations of the models in a 70 nm diameter vesicle with a biologically realistic lipid mixture reveal specific lipid interactions and oligomerisation of the trimer of dimers. The results indicate a mechanism whereby small motions of a single helix can be amplified through HAMP domain packing, to initiate large changes in the whole receptor structure. Author Summary: To understand cell signalling events requires a physical model of the structure and behaviour of the signalling proteins involved. The methyl-accepting chemoreceptor proteins direct bacterial movement towards food sources and away from toxins. Based on experimental data we have built structural models of the serine chemoreceptor (Tsr) as a dimer, which is incapable of activating the downstream kinase CheA, and as a trimer of dimers, which can activate CheA. We have performed molecular dynamics simulation to reveal the behaviour of these two forms in a planar lipid bilayer and in a 70 nm diameter lipid vesicle with a mixture of lipids mimicking the E. coli inner membrane. We show that in isolation the dimers undergo a bending movement around the central HAMP domain, whereas the trimer-of-dimers model does not. Comparison with published experimental data suggests that these bending motions are real, and that they occur in the trimer of dimers only in response to ligand binding. Drawing together these observations with studies showing that the signalling event involves small piston motions in the transmembrane helices suggests that the bending motion is frustrated in the unliganded trimer of dimers, and that ligand binding induces bending by repacking the HAMP interface.

Suggested Citation

  • Benjamin A Hall & Judith P Armitage & Mark S P Sansom, 2012. "Mechanism of Bacterial Signal Transduction Revealed by Molecular Dynamics of Tsr Dimers and Trimers of Dimers in Lipid Vesicles," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-9, September.
  • Handle: RePEc:plo:pcbi00:1002685
    DOI: 10.1371/journal.pcbi.1002685
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002685
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002685&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.