IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002667.html
   My bibliography  Save this article

The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity

Author

Listed:
  • Ashok Litwin-Kumar
  • Maurice J Chacron
  • Brent Doiron

Abstract

Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short () timescales while simultaneously reducing correlations at long () timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs. Author Summary: The size of a stimulus that is sensed by the nervous system can control the activity of neurons in sensory areas. How neural wiring supports this dependence remains an open question. We explore this general phenomenon using weakly electric fish, which possess a sensory system that detects electric field modulations produced by the surrounding environment. In particular, these animals' nervous systems are tuned to detect the difference between spatially compact prey inputs and spatially broad communication calls from other fish. In experiment, we discover that these two classes of stimuli differentially control the synchrony between pairs of electrosensory neurons. Using a computational model, we predict that this modulation is related to feedforward and feedback neural pathways in the electrosensory system, and we verify this prediction with experiments. This architecture prevents low frequency distractor stimuli, such as the animal's own tail motion, from driving neural population responses. With our model, we demonstrate how a common neural architecture enables a population-level code for behaviorally relevant stimuli.

Suggested Citation

  • Ashok Litwin-Kumar & Maurice J Chacron & Brent Doiron, 2012. "The Spatial Structure of Stimuli Shapes the Timescale of Correlations in Population Spiking Activity," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:plo:pcbi00:1002667
    DOI: 10.1371/journal.pcbi.1002667
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002667
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002667&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.