IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002585.html
   My bibliography  Save this article

Adaptive Temperature Compensation in Circadian Oscillations

Author

Listed:
  • Paul François
  • Nicolas Despierre
  • Eric D Siggia

Abstract

A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model also suggests that the shape of the circadian limit cycle and the associated phase response curves (PRC) will vary since the average concentrations of clock proteins change with temperature. We propose an alternative class of models where the twin properties of a fixed period and entrainment are structural and arise from an underlying adaptive system that buffers temperature changes. These models are distinguished by a PRC whose shape is temperature independent and orbits whose extrema are temperature independent. They are readily evolved by local, hill climbing, optimization of gene networks for a common quality measure of biological clocks, phase anticipation. Interestingly a standard realization of the Goodwin model for temperature compensation displays properties of adaptive rather than distributed temperature compensation. Author Summary: Circadian clocks are biological oscillators which evolved to couple the internal rhythm of animals, plants and even some bacteria to the alternation of light and day. Circadian oscillators are temperature compensated, i.e. they keep a 24-h period irrespective of the temperature of the organism. This is surprising, since many biochemical parameters, including average concentration of clock proteins, vary with temperature. From dynamical system theory, we therefore expect changes in both period and relative lengths of features in the phase response curve which are not seen. We couple mathematical modelling and computational evolution of gene networks to formulate a novel explanation for temperature compensation that accords better with experimental facts than alternatives. Our model has deep mathematical connections with the process of biochemical adaptation, by which cells respond to temporal gradients of signals rather than their absolute value.

Suggested Citation

  • Paul François & Nicolas Despierre & Eric D Siggia, 2012. "Adaptive Temperature Compensation in Circadian Oscillations," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-12, July.
  • Handle: RePEc:plo:pcbi00:1002585
    DOI: 10.1371/journal.pcbi.1002585
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002585
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002585&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.