IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002578.html
   My bibliography  Save this article

Shaping the Dynamics of a Bidirectional Neural Interface

Author

Listed:
  • Alessandro Vato
  • Marianna Semprini
  • Emma Maggiolini
  • Francois D Szymanski
  • Luciano Fadiga
  • Stefano Panzeri
  • Ferdinando A Mussa-Ivaldi

Abstract

Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to create artificial sensory information about the state of a device. Taken together, neural activity recording and microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system, whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and an external dynamical object with programmable properties. The system includes (a) a motor interface decoding signals from a motor cortical area, and (b) a sensory interface encoding the state of the external object into electrical stimuli to a somatosensory area. The interactions between brain activities and the state of the external object generate a family of trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which includes the prescribed reactions to unexpected perturbations. Author Summary: Brain-machine interfaces establish new communication channels between the brain and the external world with the goal of restoring sensory and motor functions for people with severe paralysis or sensory impairments. Current methodologies are based on decoding the motor intent from the recorded neural activity and transforming the extracted information into motor commands to control external devices as robotic arms. We developed a novel computational approach, based on the concept of programming dynamical behaviors trough the bi-directional sensory-motor interaction between the brain and the connected external device. This approach is based on the emulation of some control features of a biological interface, the spinal cord. The first prototype of our interface controls the state of motion of a simulated point mass in a viscous medium. The position of the point mass is encoded into a stimulus to the somatosensory cortex of an anesthetized rat. The evoked activity of a population of motor cortical neurons is decoded into a force vector applied to the point mass. The parameters of the encoder and of the decoder are set to approximate a desired force field. In the first test of the interface, we obtained a family of trajectories that converged upon a stable attractor.

Suggested Citation

  • Alessandro Vato & Marianna Semprini & Emma Maggiolini & Francois D Szymanski & Luciano Fadiga & Stefano Panzeri & Ferdinando A Mussa-Ivaldi, 2012. "Shaping the Dynamics of a Bidirectional Neural Interface," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:1002578
    DOI: 10.1371/journal.pcbi.1002578
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002578
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002578&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.