IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002565.html
   My bibliography  Save this article

Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation

Author

Listed:
  • Crina-Maria Ionescu
  • Radka Svobodová Vařeková
  • Jochen H M Prehn
  • Heinrich J Huber
  • Jaroslav Koča

Abstract

The pro-apoptotic proteins Bax and Bak are essential for executing programmed cell death (apoptosis), yet the mechanism of their activation is not properly understood at the structural level. For the first time in cell death research, we calculated intra-protein charge transfer in order to study the structural alterations and their functional consequences during Bax activation. Using an electronegativity equalization model, we investigated the changes in the Bax charge profile upon activation by a functional peptide of its natural activator protein, Bim. We found that charge reorganizations upon activator binding mediate the exposure of the functional sites of Bax, rendering Bax active. The affinity of the Bax C-domain for its binding groove is decreased due to the Arg94-mediated abrogation of the Ser184-Asp98 interaction. We further identified a network of charge reorganizations that confirms previous speculations of allosteric sensing, whereby the activation information is conveyed from the activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. The network was mediated by a hub of three residues on helix 5 of the hydrophobic core of Bax. Sequence and structural alignment revealed that this hub was conserved in the Bak amino acid sequence, and in the 3D structure of folded Bak. Our results suggest that allostery mediated by charge transfer is responsible for the activation of both Bax and Bak, and that this might be a prototypical mechanism for a fast activation of proteins during signal transduction. Our method can be applied to any protein or protein complex in order to map the progress of allosteric changes through the proteins' structure. Author Summary: Apoptosis is a physiological form of cell death that is fundamental for development, growth and homeostasis in multi-cellular organisms. Deviations in the apoptosis machinery are known to be involved in cancer, neurodegenerative disorders, and autoimmune diseases. The proteins Bax and Bak are essential for executing apoptosis, yet the mechanism of their activation is not properly understood at the structural level. To understand this mechanism, we investigated how the electronic density is reorganized (i.e., how charge is transferred) inside the Bax molecule when Bax binds a functional peptide of its natural activator protein. We identified the specific interactions responsible for the exposure of the functional sites of Bax, rendering Bax active. Furthermore, we found a network of charge transfer that conveys activation information from the Bax activation site, through the hydrophobic core of Bax, to the well-distanced functional sites of Bax. This network consists of three residues inside the hydrophobic core of Bax, which are present also in the hydrophobic core of Bak, suggesting that these residues are functionally important and thus potential drug targets. We provide a straightforward and accessible methodology to identify the key residues involved in the fast activation of proteins during signal transduction.

Suggested Citation

  • Crina-Maria Ionescu & Radka Svobodová Vařeková & Jochen H M Prehn & Heinrich J Huber & Jaroslav Koča, 2012. "Charge Profile Analysis Reveals That Activation of Pro-apoptotic Regulators Bax and Bak Relies on Charge Transfer Mediated Allosteric Regulation," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-11, June.
  • Handle: RePEc:plo:pcbi00:1002565
    DOI: 10.1371/journal.pcbi.1002565
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002565
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002565&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Evripidis Gavathiotis & Motoshi Suzuki & Marguerite L. Davis & Kenneth Pitter & Gregory H. Bird & Samuel G. Katz & Ho-Chou Tu & Hyungjin Kim & Emily H.-Y. Cheng & Nico Tjandra & Loren D. Walensky, 2008. "BAX activation is initiated at a novel interaction site," Nature, Nature, vol. 455(7216), pages 1076-1081, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadege Gitego & Bogos Agianian & Oi Wei Mak & Vasantha Kumar MV & Emily H. Cheng & Evripidis Gavathiotis, 2023. "Chemical modulation of cytosolic BAX homodimer potentiates BAX activation and apoptosis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Andrea Lopez & Denis E. Reyna & Nadege Gitego & Felix Kopp & Hua Zhou & Miguel A. Miranda-Roman & Lars Ulrik Nordstrøm & Swathi-Rao Narayanagari & Ping Chi & Eduardo Vilar & Aristotelis Tsirigos & Evr, 2022. "Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.