IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002265.html
   My bibliography  Save this article

Speed, Sensitivity, and Bistability in Auto-activating Signaling Circuits

Author

Listed:
  • Rutger Hermsen
  • David W Erickson
  • Terence Hwa

Abstract

Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions. Author Summary: Different times call for different measures. Therefore, cells adjust their protein levels depending on their environment. Upon the detection of certain environmental signals, transcription factors are activated, which activate or inhibit the production of specific sets of proteins. As it turns out, these transcription factors often also stimulate their own production. Indeed, such self-regulation is a common motif in signal–response systems of many organisms, including bacteria, animals, plants and viruses–but its function is not well understood. We have used mathematical models to study its benefits and drawbacks. On the one hand, calculations show that self-regulation can be a very useful tool if the cell needs to respond in a sensitive way to changes in its environment, or if it is supposed to respond only if the signal exceeds a threshold level. On the other hand, these benefits come at a cost: self-regulation severely slows down the cell's response to changes in the environment. We have analyzed how the cell can benefit from the advantages of self-regulation, while mitigating the drawbacks. This leads to strict design constraints that examples from the bacterium E. coli indeed seem to obey.

Suggested Citation

  • Rutger Hermsen & David W Erickson & Terence Hwa, 2011. "Speed, Sensitivity, and Bistability in Auto-activating Signaling Circuits," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-9, November.
  • Handle: RePEc:plo:pcbi00:1002265
    DOI: 10.1371/journal.pcbi.1002265
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002265
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002265&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    2. Rutger Hermsen & Sander Tans & Pieter Rein ten Wolde, 2006. "Transcriptional Regulation by Competing Transcription Factor Modules," PLOS Computational Biology, Public Library of Science, vol. 2(12), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaurav D. Sankhe & Rubesh Raja & Devendra Pratap Singh & Sneha Bheemireddy & Subinoy Rana & P. J. Athira & Narendra M. Dixit & Deepak Kumar Saini, 2023. "Sequestration of histidine kinases by non-cognate response regulators establishes a threshold level of stimulation for bacterial two-component signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutger Hermsen & Bas Ursem & Pieter Rein ten Wolde, 2010. "Combinatorial Gene Regulation Using Auto-Regulation," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
    2. Amir Shahein & Maria López-Malo & Ivan Istomin & Evan J. Olson & Shiyu Cheng & Sebastian J. Maerkl, 2022. "Systematic analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional relevance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.