IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001021.html
   My bibliography  Save this article

Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data

Author

Listed:
  • Fabrizio Iozzi
  • Francesco Trusiano
  • Matteo Chinazzi
  • Francesco C Billari
  • Emilio Zagheni
  • Stefano Merler
  • Marco Ajelli
  • Emanuele Del Fava
  • Piero Manfredi

Abstract

Knowledge of social contact patterns still represents the most critical step for understanding the spread of directly transmitted infections. Data on social contact patterns are, however, expensive to obtain. A major issue is then whether the simulation of synthetic societies might be helpful to reliably reconstruct such data. In this paper, we compute a variety of synthetic age-specific contact matrices through simulation of a simple individual-based model (IBM). The model is informed by Italian Time Use data and routine socio-demographic data (e.g., school and workplace attendance, household structure, etc.). The model is named “Little Italy” because each artificial agent is a clone of a real person. In other words, each agent's daily diary is the one observed in a corresponding real individual sampled in the Italian Time Use Survey. We also generated contact matrices from the socio-demographic model underlying the Italian IBM for pandemic prediction. These synthetic matrices are then validated against recently collected Italian serological data for Varicella (VZV) and ParvoVirus (B19). Their performance in fitting sero-profiles are compared with other matrices available for Italy, such as the Polymod matrix. Synthetic matrices show the same qualitative features of the ones estimated from sample surveys: for example, strong assortativeness and the presence of super- and sub-diagonal stripes related to contacts between parents and children. Once validated against serological data, Little Italy matrices fit worse than the Polymod one for VZV, but better than concurrent matrices for B19. This is the first occasion where synthetic contact matrices are systematically compared with real ones, and validated against epidemiological data. The results suggest that simple, carefully designed, synthetic matrices can provide a fruitful complementary approach to questionnaire-based matrices. The paper also supports the idea that, depending on the transmissibility level of the infection, either the number of different contacts, or repeated exposure, may be the key factor for transmission.Author Summary: Data on social contact patterns are fundamental to design adequate control policies for directly transmissible infectious diseases, ranging from a flu pandemic to tuberculosis, to recurrent epidemics of childhood diseases. Most countries in the world do not dispose of such data. We propose an approach to generate synthetic contact data by simulating an artificial society that integrates routinely available socio-demographic data, such as data on household composition or on school participation, with Time Use data, which are increasingly available. We then validate the ensuing simulated contact data against real epidemiological data for varicella and parvo-virus. The results suggest that the approach is potentially a very fruitful one, and provide some insights on the biology of transmission of close-contact infectious diseases.

Suggested Citation

  • Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
  • Handle: RePEc:plo:pcbi00:1001021
    DOI: 10.1371/journal.pcbi.1001021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001021
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.