IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000360.html
   My bibliography  Save this article

Allosteric Transitions of Supramolecular Systems Explored by Network Models: Application to Chaperonin GroEL

Author

Listed:
  • Zheng Yang
  • Peter Májek
  • Ivet Bahar

Abstract

Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM), for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s), most of which involve conserved residues. Author Summary: Most proteins are biomolecular machines. They perform their function by undergoing changes between different structures. Understanding the mechanism of transition between these structures is of major importance to design methods for controlling such transitions, and thereby modulating protein function. Although there are many computational methods for exploring the transitions of small proteins, the task of exploring the transition pathways becomes prohibitively expensive in the case of supramolecular systems. The bacterial chaperonin GroEL is such a supramolecular machine. It plays an important role in assisting protein folding. During its function, GroEL undergoes structural transitions between multiple forms. Here, we are introducing a new methodology, based on elastic network models, for elucidating the transition mechanisms in such supramolecular systems. Application to GroEL provides us with biologically significant information on critical interactions and sequence of events occurring during the chaperonin machinery and key contacts that make and break at the transition. The method can be readily applied to other supramolecular machines.

Suggested Citation

  • Zheng Yang & Peter Májek & Ivet Bahar, 2009. "Allosteric Transitions of Supramolecular Systems Explored by Network Models: Application to Chaperonin GroEL," PLOS Computational Biology, Public Library of Science, vol. 5(4), pages 1-21, April.
  • Handle: RePEc:plo:pcbi00:1000360
    DOI: 10.1371/journal.pcbi.1000360
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000360
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000360&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chakra Chennubhotla & Ivet Bahar, 2007. "Signal Propagation in Proteins and Relation to Equilibrium Fluctuations," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Skjaerven & Barry Grant & Arturo Muga & Knut Teigen & J Andrew McCammon & Nathalie Reuter & Aurora Martinez, 2011. "Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-14, March.
    2. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsiao-Mei Lu & Jie Liang, 2009. "Perturbation-based Markovian Transmission Model for Probing Allosteric Dynamics of Large Macromolecular Assembling: A Study of GroEL-GroES," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-13, October.
    2. Isaure Chauvot de Beauchêne & Ariane Allain & Nicolas Panel & Elodie Laine & Alain Trouvé & Patrice Dubreuil & Luba Tchertanov, 2014. "Hotspot Mutations in KIT Receptor Differentially Modulate Its Allosterically Coupled Conformational Dynamics: Impact on Activation and Drug Sensitivity," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-25, July.
    3. V. Ejov & J. A. Filar & M. Haythorpe & J. F. Roddick & S. Rossomakhine, 2018. "A note on using the resistance-distance matrix to solve Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 261(1), pages 393-399, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.