IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0020082.html
   My bibliography  Save this article

Key Role of Local Regulation in Chemosensing Revealed by a New Molecular Interaction-Based Modeling Method

Author

Listed:
  • Martin Meier-Schellersheim
  • Xuehua Xu
  • Bastian Angermann
  • Eric J Kunkel
  • Tian Jin
  • Ronald N Germain

Abstract

The signaling network underlying eukaryotic chemosensing is a complex combination of receptor-mediated transmembrane signals, lipid modifications, protein translocations, and differential activation/deactivation of membrane-bound and cytosolic components. As such, it provides particularly interesting challenges for a combined computational and experimental analysis. We developed a novel detailed molecular signaling model that, when used to simulate the response to the attractant cyclic adenosine monophosphate (cAMP), made nontrivial predictions about Dictyostelium chemosensing. These predictions, including the unexpected existence of spatially asymmetrical, multiphasic, cyclic adenosine monophosphate–induced PTEN translocation and phosphatidylinositol-(3,4,5)P3 generation, were experimentally verified by quantitative single-cell microscopy leading us to propose significant modifications to the current standard model for chemoattractant-induced biochemical polarization in this organism. Key to this successful modeling effort was the use of “Simmune,” a new software package that supports the facile development and testing of detailed computational representations of cellular behavior. An intuitive interface allows user definition of complex signaling networks based on the definition of specific molecular binding site interactions and the subcellular localization of molecules. It automatically translates such inputs into spatially resolved simulations and dynamic graphical representations of the resulting signaling network that can be explored in a manner that closely parallels wet lab experimental procedures. These features of Simmune were critical to the model development and analysis presented here and are likely to be useful in the computational investigation of many aspects of cell biology.Synopsis: Cells can orient their migration in response to small local differences in the concentration of extracellular chemicals (chemoattractants). Understanding this process (chemosensing) requires analyzing the time and position-dependent behavior of the signaling molecules within the responding cell, making it an especially interesting challenge for both experimental and computational investigation. Here, the authors report the development and testing of a new detailed molecular model of the chemosensing apparatus of the amoeba Dictyostelium discoidium reacting to the chemoattractant cyclic adenosine monophosphate. Computer simulations performed using this model predicted unexpected and previously unreported patterns of changes in the concentration and location of two important intracellular signaling molecules. These predictions were experimentally verified using microscopy, suggesting the need for modifications to the current “standard” model of eukaryotic chemosensing. The high degree of detail in their model was made possible by a new software suite called “Simmune,” which allows biologists to enter information about molecular interactions using a graphical interface. Without requiring the user to write any equations, the software automatically constructs the overall reaction network, simulates the model, and provides several ways to view the biochemistry of simulated cells. This new tool should help biologists to translate qualitative representations of cell biological processes into quantitative, predictive models.

Suggested Citation

  • Martin Meier-Schellersheim & Xuehua Xu & Bastian Angermann & Eric J Kunkel & Tian Jin & Ronald N Germain, 2006. "Key Role of Local Regulation in Chemosensing Revealed by a New Molecular Interaction-Based Modeling Method," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-15, July.
  • Handle: RePEc:plo:pcbi00:0020082
    DOI: 10.1371/journal.pcbi.0020082
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020082
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0020082&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0020082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0020082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.