IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0010008.html
   My bibliography  Save this article

Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a β-Hairpin

Author

Listed:
  • Laxmi Parida
  • Ruhong Zhou

Abstract

The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated) approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters)—each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c∈RO((N + nm) log n), where N is the size of the output patterns and (n × m) is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a β-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1) The method recovers states previously obtained by visually analyzing free energy surfaces. (2) It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the β-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3) The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the choice of reaction coordinates. (An abstract version of this work was presented at the 2005 Asia Pacific Bioinformatics Conference [1].) : The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, the authors present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated) approach toward identification of global states. The authors apply this approach to a β-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism.

Suggested Citation

  • Laxmi Parida & Ruhong Zhou, 2005. "Combinatorial Pattern Discovery Approach for the Folding Trajectory Analysis of a β-Hairpin," PLOS Computational Biology, Public Library of Science, vol. 1(1), pages 1-1, June.
  • Handle: RePEc:plo:pcbi00:0010008
    DOI: 10.1371/journal.pcbi.0010008
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0010008
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0010008&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0010008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0010008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.