IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3001319.html
   My bibliography  Save this article

A flexible framework for multi-particle refinement in cryo-electron tomography

Author

Listed:
  • Alister Burt
  • Lorenzo Gaifas
  • Tom Dendooven
  • Irina Gutsche

Abstract

Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.Employing optimal computational methodology in cryo-electron tomography is not always easy; this article provides a set of tools and a complete guide to obtaining high-resolution structures from cryo-ET data.

Suggested Citation

  • Alister Burt & Lorenzo Gaifas & Tom Dendooven & Irina Gutsche, 2021. "A flexible framework for multi-particle refinement in cryo-electron tomography," PLOS Biology, Public Library of Science, vol. 19(8), pages 1-16, August.
  • Handle: RePEc:plo:pbio00:3001319
    DOI: 10.1371/journal.pbio.3001319
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001319
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001319&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3001319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takanori Nakane & Abhay Kotecha & Andrija Sente & Greg McMullan & Simonas Masiulis & Patricia M. G. E. Brown & Ioana T. Grigoras & Lina Malinauskaite & Tomas Malinauskas & Jonas Miehling & Tomasz Ucha, 2020. "Single-particle cryo-EM at atomic resolution," Nature, Nature, vol. 587(7832), pages 152-156, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahua He & Tao Li & Sheng-You Huang, 2023. "Improvement of cryo-EM maps by simultaneous local and non-local deep learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Jing Cheng & Tong Liu & Xin You & Fa Zhang & Sen-Fang Sui & Xiaohua Wan & Xinzheng Zhang, 2023. "Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Sriram Aiyer & Philip R. Baldwin & Shi Min Tan & Zelin Shan & Juntaek Oh & Atousa Mehrani & Marianne E. Bowman & Gordon Louie & Dario Oliveira Passos & Selena Đorđević-Marquardt & Mario Mietzsch & Jos, 2024. "Overcoming resolution attenuation during tilted cryo-EM data collection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Alex J. Flynn & Svetlana V. Antonyuk & Robert R. Eady & Stephen P. Muench & S. Samar Hasnain, 2023. "A 2.2 Å cryoEM structure of a quinol-dependent NO Reductase shows close similarity to respiratory oxidases," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Andrew Muenks & Samantha Zepeda & Guangfeng Zhou & David Veesler & Frank DiMaio, 2023. "Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Rebeccah A. Warmack & Ailiena O. Maggiolo & Andres Orta & Belinda B. Wenke & James B. Howard & Douglas C. Rees, 2023. "Structural consequences of turnover-induced homocitrate loss in nitrogenase," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Victoria I. Cushing & Adrian F. Koh & Junjie Feng & Kaste Jurgaityte & Alexander Bondke & Sebastian H. B. Kroll & Marion Barbazanges & Bodo Scheiper & Ash K. Bahl & Anthony G. M. Barrett & Simak Ali &, 2024. "High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Mitsuyoshi Kamba & Ryoga Shimizu & Kiyotaka Aikawa, 2023. "Nanoscale feedback control of six degrees of freedom of a near-sphere," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Hongcheng Fan & Bo Wang & Yan Zhang & Yun Zhu & Bo Song & Haijin Xu & Yujia Zhai & Mingqiang Qiao & Fei Sun, 2021. "A cryo-electron microscopy support film formed by 2D crystals of hydrophobin HFBI," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3001319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.