IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/0030386.html
   My bibliography  Save this article

Ultrasonic Songs of Male Mice

Author

Listed:
  • Timothy E Holy
  • Zhongsheng Guo

Abstract

Previously it was shown that male mice, when they encounter female mice or their pheromones, emit ultrasonic vocalizations with frequencies ranging over 30–110 kHz. Here, we show that these vocalizations have the characteristics of song, consisting of several different syllable types, whose temporal sequencing includes the utterance of repeated phrases. Individual males produce songs with characteristic syllabic and temporal structure. This study provides a quantitative initial description of male mouse songs, and opens the possibility of studying song production and perception in an established genetic model organism. Vocalizations emitted by male mice when encoutering female pheromones have the characteristics of song, including temporal structure and repeated syllables.

Suggested Citation

  • Timothy E Holy & Zhongsheng Guo, 2005. "Ultrasonic Songs of Male Mice," PLOS Biology, Public Library of Science, vol. 3(12), pages 1-1, November.
  • Handle: RePEc:plo:pbio00:0030386
    DOI: 10.1371/journal.pbio.0030386
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030386
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0030386&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.0030386?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michale S. Fee & Boris Shraiman & Bijan Pesaran & Partha P. Mitra, 1998. "The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird," Nature, Nature, vol. 395(6697), pages 67-71, September.
    2. Cecilia S. L. Lai & Simon E. Fisher & Jane A. Hurst & Faraneh Vargha-Khadem & Anthony P. Monaco, 2001. "A forkhead-domain gene is mutated in a severe speech and language disorder," Nature, Nature, vol. 413(6855), pages 519-523, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A Ivanenko & P Watkins & M A J van Gerven & K Hammerschmidt & B Englitz, 2020. "Classifying sex and strain from mouse ultrasonic vocalizations using deep learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    2. Sarah M Zala & Doris Reitschmidt & Anton Noll & Peter Balazs & Dustin J Penn, 2017. "Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus)," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    3. Marika Premoli & Daniele Baggi & Marco Bianchetti & Alessandro Gnutti & Marco Bondaschi & Andrea Mastinu & Pierangelo Migliorati & Alberto Signoroni & Riccardo Leonardi & Maurizio Memo & Sara Anna Bon, 2021. "Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-16, January.
    4. Gregg A Castellucci & Daniel Calbick & David McCormick, 2018. "The temporal organization of mouse ultrasonic vocalizations," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Zhang Xiao, 2022. "How Does a Healthy Interactive Environment Sustain Foreign Language Development? An Ecocontextualized Approach," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    2. Julie E Miller & Austin T Hilliard & Stephanie A White, 2010. "Song Practice Promotes Acute Vocal Variability at a Key Stage of Sensorimotor Learning," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-15, January.
    3. Avishek Paul & Helen McLendon & Veronica Rally & Jon T Sakata & Sarah C Woolley, 2021. "Behavioral discrimination and time-series phenotyping of birdsong performance," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-21, April.
    4. Xinru Zhang & Bohao Fang & Yi-Fei Huang, 2023. "Transcription factor binding sites are frequently under accelerated evolution in primates," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:0030386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.