IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i6d10.1057_palgrave.jors.2601754.html
   My bibliography  Save this article

The multi-source Weber problem with constant opening cost

Author

Listed:
  • J Brimberg

    (Royal Military College of Canada
    GERAD)

  • N Mladenovic

    (GERAD
    Mathematical Institute)

  • S Salhi

    (The University of Birmingham)

Abstract

A constant fixed cost of establishing a facility is introduced within the framework of minisum facility location in the continuous space. The solution method developed uses a multi-phase heuristic that first solves a discrete version of the problem by existing methods to obtain an estimate of the optimal number of facilities. Some results are presented for test problems taken from the literature and compared with best-known solutions of the multi-source Weber problem with the addition of the appropriate fixed costs.

Suggested Citation

  • J Brimberg & N Mladenovic & S Salhi, 2004. "The multi-source Weber problem with constant opening cost," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(6), pages 640-646, June.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:6:d:10.1057_palgrave.jors.2601754
    DOI: 10.1057/palgrave.jors.2601754
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601754
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    2. Margaret L. Brandeau & Samuel S. Chiu, 1989. "An Overview of Representative Problems in Location Research," Management Science, INFORMS, vol. 35(6), pages 645-674, June.
    3. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    4. Beasley, J. E., 1993. "Lagrangean heuristics for location problems," European Journal of Operational Research, Elsevier, vol. 65(3), pages 383-399, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trampont, M. & Destré, C. & Faye, A., 2011. "Solving a continuous local access network design problem with a stabilized central column generation approach," European Journal of Operational Research, Elsevier, vol. 214(3), pages 546-558, November.
    2. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    3. Chandra Ade Irawan & Said Salhi & Kusmaningrum Soemadi, 2020. "The continuous single-source capacitated multi-facility Weber problem with setup costs: formulation and solution methods," Journal of Global Optimization, Springer, vol. 78(2), pages 271-294, October.
    4. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    5. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    6. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    7. Brimberg, Jack & Drezner, Zvi & Mladenović, Nenad & Salhi, Said, 2014. "A new local search for continuous location problems," European Journal of Operational Research, Elsevier, vol. 232(2), pages 256-265.
    8. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
    2. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    3. Wang, Shaojun & Sarker, Bhaba R. & Mann, Lawrence & Triantaphyllou, Evangelos, 2004. "Resource planning and a depot location model for electric power restoration," European Journal of Operational Research, Elsevier, vol. 155(1), pages 22-43, May.
    4. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    5. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    7. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 2000. "An exact method for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 123(3), pages 473-489, June.
    8. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    9. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 1997. "Lagrangian heuristics for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 102(3), pages 611-625, November.
    10. Richard L. Church & Zvi Drezner & Pawel Kalczynski, 2023. "Extensions to the planar p-median problem," Annals of Operations Research, Springer, vol. 326(1), pages 115-135, July.
    11. Bülent Çatay & Ş. Selçuk Erengüç & Asoo J. Vakharia, 2005. "Capacity allocation with machine duplication in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 659-667, October.
    12. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    13. N Aras & K C Özkısacık & İ K Altınel, 2006. "Solving the uncapacitated multi-facility Weber problem by vector quantization and self-organizing maps," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 82-93, January.
    14. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    15. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    16. Sheu, Jiuh Biing & Kundu, Tanmoy, 2018. "Forecasting time-varying logistics distribution flows in the One Belt-One Road strategic context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 5-22.
    17. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    18. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    19. Zainuddin, Z.M. & Salhi, S., 2007. "A perturbation-based heuristic for the capacitated multisource Weber problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1194-1207, June.
    20. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:6:d:10.1057_palgrave.jors.2601754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.