IDEAS home Printed from https://ideas.repec.org/a/oup/revfin/v8y2004i3p355-401..html
   My bibliography  Save this article

R&D Investments with Competitive Interactions

Author

Listed:
  • Kristian R. Miltersen
  • Eduardo S. Schwart

Abstract

In this article we develop a model to analyze patent-protected R&D investment projects when there is (imperfect) competition in the development and marketing of the resulting product. The competitive interactions that occur substantially complicate the solution of the problem since the decision maker has to take into account not only the factors that affect her/his own decisions, but also the factors that affect the decisions of the other investors. The real options framework utilized to deal with investments under uncertainty is extended to incorporate the game theoretic concepts required to deal with these interactions. Implementation of the model shows that competition in R&D, in general, not only increases production and reduces prices, but also shortens the time of developing the product and increases the probability of a successful development. These benefits to society are countered by increased total investment costs in R&D and lower aggregate value of the R&D investment projects.

Suggested Citation

  • Kristian R. Miltersen & Eduardo S. Schwart, 2004. "R&D Investments with Competitive Interactions," Review of Finance, European Finance Association, vol. 8(3), pages 355-401.
  • Handle: RePEc:oup:revfin:v:8:y:2004:i:3:p:355-401.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10679-004-2543-z
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arasteh, Abdollah, 2017. "Considering the investment decisions with real options games approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1282-1294.
    2. Maier, Sebastian & Pflug, Georg C. & Polak, John W., 2020. "Valuing portfolios of interdependent real options under exogenous and endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 285(1), pages 133-147.
    3. Han T. J. Smit & Lenos Trigeorgis, 2017. "Strategic NPV: Real Options and Strategic Games under Different Information Structures," Strategic Management Journal, Wiley Blackwell, vol. 38(13), pages 2555-2578, December.
    4. Chevalier-Roignant, Benoît & Flath, Christoph M. & Huchzermeier, Arnd & Trigeorgis, Lenos, 2011. "Strategic investment under uncertainty: A synthesis," European Journal of Operational Research, Elsevier, vol. 215(3), pages 639-650, December.
    5. Deeney, Peter & Cummins, Mark & Heintz, Katharina & Pryce, Mary T., 2021. "A real options based decision support tool for R&D investment: Application to CO2 recycling technology," European Journal of Operational Research, Elsevier, vol. 289(2), pages 696-711.
    6. Jeon, Haejun, 2019. "Patent protection and R&D subsidy under asymmetric information," International Review of Economics & Finance, Elsevier, vol. 62(C), pages 332-354.
    7. Hsu, Jason C. & Schwartz, Eduardo S., 2008. "A model of R&D valuation and the design of research incentives," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 350-367, December.
    8. S. Alonso & V. Azofra & G. De La Fuente, 2014. "What do you do when the binomial cannot value real options? The LSM model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-17, December.
    9. Shibata, Takashi, 2008. "The impacts of uncertainties in a real options model under incomplete information," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1368-1379, June.
    10. Brandão, Luiz E. & Fernandes, Gláucia & Dyer, James S., 2018. "Valuing multistage investment projects in the pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 271(2), pages 720-732.
    11. Garcia Fronti, Javier, 2015. "Modelo estocástico para la valuación de una inversión nanomédica [Nanomedical Stochastic Investment Valuation]," MPRA Paper 63948, University Library of Munich, Germany.
    12. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2021. "Strategic technology switching under risk aversion and uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:revfin:v:8:y:2004:i:3:p:355-401.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/eufaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.