IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v21y2023i5p1680-1727..html
   My bibliography  Save this article

A Machine Learning Approach to Volatility Forecasting

Author

Listed:
  • Kim Christensen
  • Mathias Siggaard
  • Bezirgen Veliyev

Abstract

We inspect how accurate machine learning (ML) is at forecasting realized variance of the Dow Jones Industrial Average index constituents. We compare several ML algorithms, including regularization, regression trees, and neural networks, to multiple heterogeneous autoregressive (HAR) models. ML is implemented with minimal hyperparameter tuning. In spite of this, ML is competitive and beats the HAR lineage, even when the only predictors are the daily, weekly, and monthly lags of realized variance. The forecast gains are more pronounced at longer horizons. We attribute this to higher persistence in the ML models, which helps to approximate the long memory of realized variance. ML also excels at locating incremental information about future volatility from additional predictors. Lastly, we propose an ML measure of variable importance based on accumulated local effects. This shows that while there is agreement about the most important predictors, there is disagreement on their ranking, helping to reconcile our results.

Suggested Citation

  • Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
  • Handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1680-1727.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbac020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    accumulated local effect; heterogeneous auto-regression; machine learning; realized variance; volatility forecasting;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1680-1727.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.