IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v21y2023i4p1346-1375..html
   My bibliography  Save this article

Maximum-Likelihood Estimation Using the Zig-Zag Algorithm

Author

Listed:
  • Nikolaus Hautsch
  • Ostap Okhrin
  • Alexander Ristig

Abstract

We analyze the properties of the Maximum Likelihood (ML) estimator when the underlying log-likelihood function is numerically maximized with the so-called zig-zag algorithm. By splitting the parameter vector into sub-vectors, the algorithm maximizes the log-likelihood function alternatingly with respect to one sub-vector while keeping the others constant. For situations when the algorithm is initialized with a consistent estimator and is iterated sufficiently often, we establish the asymptotic equivalence of the zig-zag estimator and the “infeasible” ML estimator being numerically approximated. This result gives guidance for practical implementations. We illustrate how to employ the algorithm in different estimation problems, such as in a vine copula model and a vector autoregressive moving average model. The accuracy of the estimator is illustrated through simulations. Finally, we demonstrate the usefulness of our results in an application, where the Bitcoin heating 2017 is analyzed by a dynamic conditional correlation model.

Suggested Citation

  • Nikolaus Hautsch & Ostap Okhrin & Alexander Ristig, 2023. "Maximum-Likelihood Estimation Using the Zig-Zag Algorithm," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1346-1375.
  • Handle: RePEc:oup:jfinec:v:21:y:2023:i:4:p:1346-1375.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbac006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Bitcoin; dynamic conditional correlation; efficient estimation; Gauß–Seidel; iterative estimation; maximization by parts; vector autoregressive moving average; vine copula;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:21:y:2023:i:4:p:1346-1375.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.