IDEAS home Printed from https://ideas.repec.org/a/oup/beheco/v29y2018i3p761-768..html
   My bibliography  Save this article

Threat sensitive adjustment of aggression by males and females in a biparental cichlid

Author

Listed:
  • Will Sowersby
  • Topi K Lehtonen
  • Bob B M Wong

Abstract

Defending offspring provides fitness benefits to parents, but is costly. To moderate costs, parents should adjust aggressive responses to the threat posed by different species entering their territory. However, few studies have experimentally tested behavioral adjustments in response to the threat posed by different types of intruders, particularly in the field, and in environments with an array of heterospecific intruders. Here, using a biparental cichlid, the poor man’s tropheus (Hypsophrys nematopus), we investigated whether males and females in the wild invest equally into offspring defense and what impact the absence of a partner might have on the quality of offspring defense provided by a solitary parent. In a separate experiment, we assessed responses of breeding pairs to 3 common heterospecific intruders that pose different levels of threat to the breeding pair and their brood. We found that both paired and unpaired females invested significantly more into territorial aggression than males. However, unpaired females were unable to fully compensate for the absence of their partner, with intruders left to venture closer to their offspring. Furthermore, we show that breeding pairs can readily discriminate between heterospecific intruders, with pairs responding quicker and more aggressively towards species that posed a greater potential threat. Our results demonstrate that biparental species can have extensive behavioral flexibility in their aggressive responses towards intruders, even in environments with a high frequency of territory incursion. The quality of territorial defense can nevertheless be compromised if one parent is left to defend the brood alone.

Suggested Citation

  • Will Sowersby & Topi K Lehtonen & Bob B M Wong, 2018. "Threat sensitive adjustment of aggression by males and females in a biparental cichlid," Behavioral Ecology, International Society for Behavioral Ecology, vol. 29(3), pages 761-768.
  • Handle: RePEc:oup:beheco:v:29:y:2018:i:3:p:761-768.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/beheco/ary037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:29:y:2018:i:3:p:761-768.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.