IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v623y2023i7987d10.1038_s41586-023-06649-6.html
   My bibliography  Save this article

A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes

Author

Listed:
  • Theo Sanderson

    (Francis Crick Institute)

  • Ryan Hisner

    (University of Cape Town)

  • I’ah Donovan-Banfield

    (University of Liverpool
    National Institute for Health and Care Research)

  • Hassan Hartman

    (UK Health Security Agency)

  • Alessandra Løchen

    (UK Health Security Agency)

  • Thomas P. Peacock

    (Imperial College London
    The Pirbright Institute)

  • Christopher Ruis

    (University of Cambridge Department of Medicine, Medical Research Council-Laboratory of Molecular Biology
    University of Cambridge
    University of Cambridge
    University of Cambridge)

Abstract

Molnupiravir, an antiviral medication widely used against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), acts by inducing mutations in the virus genome during replication. Most random mutations are likely to be deleterious to the virus and many will be lethal; thus, molnupiravir-induced elevated mutation rates reduce viral load1,2. However, if some patients treated with molnupiravir do not fully clear the SARS-CoV-2 infections, there could be the potential for onward transmission of molnupiravir-mutated viruses. Here we show that SARS-CoV-2 sequencing databases contain extensive evidence of molnupiravir mutagenesis. Using a systematic approach, we find that a specific class of long phylogenetic branches, distinguished by a high proportion of G-to-A and C-to-T mutations, are found almost exclusively in sequences from 2022, after the introduction of molnupiravir treatment, and in countries and age groups with widespread use of the drug. We identify a mutational spectrum, with preferred nucleotide contexts, from viruses in patients known to have been treated with molnupiravir and show that its signature matches that seen in these long branches, in some cases with onward transmission of molnupiravir-derived lineages. Finally, we analyse treatment records to confirm a direct association between these high G-to-A branches and the use of molnupiravir.

Suggested Citation

  • Theo Sanderson & Ryan Hisner & I’ah Donovan-Banfield & Hassan Hartman & Alessandra Løchen & Thomas P. Peacock & Christopher Ruis, 2023. "A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes," Nature, Nature, vol. 623(7987), pages 594-600, November.
  • Handle: RePEc:nat:nature:v:623:y:2023:i:7987:d:10.1038_s41586-023-06649-6
    DOI: 10.1038/s41586-023-06649-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06649-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06649-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph F. Standing & Laura Buggiotti & Jose Afonso Guerra-Assuncao & Maximillian Woodall & Samuel Ellis & Akosua A. Agyeman & Charles Miller & Mercy Okechukwu & Emily Kirkpatrick & Amy I. Jacobs & Cha, 2024. "Randomized controlled trial of molnupiravir SARS-CoV-2 viral and antibody response in at-risk adult outpatients," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:623:y:2023:i:7987:d:10.1038_s41586-023-06649-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.