IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7924d10.1038_s41586-022-04983-9.html
   My bibliography  Save this article

Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting

Author

Listed:
  • Quanquan Pang

    (Peking University)

  • Jiashen Meng

    (Peking University
    Wuhan University of Technology
    Massachusetts Institute of Technology)

  • Saransh Gupta

    (University of Louisville)

  • Xufeng Hong

    (Peking University)

  • Chun Yuen Kwok

    (University of Waterloo)

  • Ji Zhao

    (Massachusetts Institute of Technology)

  • Yingxia Jin

    (Massachusetts Institute of Technology
    Yunnan University)

  • Like Xu

    (Massachusetts Institute of Technology)

  • Ozlem Karahan

    (Massachusetts Institute of Technology)

  • Ziqi Wang

    (Massachusetts Institute of Technology)

  • Spencer Toll

    (Massachusetts Institute of Technology)

  • Liqiang Mai

    (Wuhan University of Technology
    Wuhan University of Technology)

  • Linda F. Nazar

    (University of Waterloo)

  • Mahalingam Balasubramanian

    (Argonne National Laboratory)

  • Badri Narayanan

    (University of Louisville)

  • Donald R. Sadoway

    (Massachusetts Institute of Technology)

Abstract

Although batteries fitted with a metal negative electrode are attractive for their higher energy density and lower complexity, the latter making them more easily recyclable, the threat of cell shorting by dendrites has stalled deployment of the technology1,2. Here we disclose a bidirectional, rapidly charging aluminium–chalcogen battery operating with a molten-salt electrolyte composed of NaCl–KCl–AlCl3. Formulated with high levels of AlCl3, these chloroaluminate melts contain catenated AlnCl3n+1– species, for example, Al2Cl7–, Al3Cl10– and Al4Cl13–, which with their Al–Cl–Al linkages confer facile Al3+ desolvation kinetics resulting in high faradaic exchange currents, to form the foundation for high-rate charging of the battery. This chemistry is distinguished from other aluminium batteries in the choice of a positive elemental-chalcogen electrode as opposed to various low-capacity compound formulations3–6, and in the choice of a molten-salt electrolyte as opposed to room-temperature ionic liquids that induce high polarization7–12. We show that the multi-step conversion pathway between aluminium and chalcogen allows rapid charging at up to 200C, and the battery endures hundreds of cycles at very high charging rates without aluminium dendrite formation. Importantly for scalability, the cell-level cost of the aluminium–sulfur battery is projected to be less than one-sixth that of current lithium-ion technologies. Composed of earth-abundant elements that can be ethically sourced and operated at moderately elevated temperatures just above the boiling point of water, this chemistry has all the requisites of a low-cost, rechargeable, fire-resistant, recyclable battery.

Suggested Citation

  • Quanquan Pang & Jiashen Meng & Saransh Gupta & Xufeng Hong & Chun Yuen Kwok & Ji Zhao & Yingxia Jin & Like Xu & Ozlem Karahan & Ziqi Wang & Spencer Toll & Liqiang Mai & Linda F. Nazar & Mahalingam Bal, 2022. "Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting," Nature, Nature, vol. 608(7924), pages 704-711, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7924:d:10.1038_s41586-022-04983-9
    DOI: 10.1038/s41586-022-04983-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04983-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04983-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiashen Meng & Xufeng Hong & Zhitong Xiao & Linhan Xu & Lujun Zhu & Yongfeng Jia & Fang Liu & Liqiang Mai & Quanquan Pang, 2024. "Rapid-charging aluminium-sulfur batteries operated at 85 °C with a quaternary molten salt electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jiashen Meng & Xuhui Yao & Xufeng Hong & Lujun Zhu & Zhitong Xiao & Yongfeng Jia & Fang Liu & Huimin Song & Yunlong Zhao & Quanquan Pang, 2023. "A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zhijing Yu & Wei Wang & Yong Zhu & Wei-Li Song & Zheng Huang & Zhe Wang & Shuqiang Jiao, 2023. "Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7924:d:10.1038_s41586-022-04983-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.