IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v603y2022i7902d10.1038_s41586-022-04462-1.html
   My bibliography  Save this article

Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant

Author

Listed:
  • Rigel Suzuki

    (Hokkaido University)

  • Daichi Yamasoba

    (The University of Tokyo
    Kobe University)

  • Izumi Kimura

    (The University of Tokyo)

  • Lei Wang

    (Hokkaido University
    Hokkaido University)

  • Mai Kishimoto

    (Hokkaido University)

  • Jumpei Ito

    (The University of Tokyo)

  • Yuhei Morioka

    (Hokkaido University)

  • Naganori Nao

    (Hokkaido University
    Hokkaido University)

  • Hesham Nasser

    (Kumamoto University
    Suez Canal University)

  • Keiya Uriu

    (The University of Tokyo
    The University of Tokyo)

  • Yusuke Kosugi

    (The University of Tokyo
    Kyoto University
    Kyoto University)

  • Masumi Tsuda

    (Hokkaido University
    Hokkaido University)

  • Yasuko Orba

    (Hokkaido University
    Hokkaido University)

  • Michihito Sasaki

    (Hokkaido University
    Hokkaido University)

  • Ryo Shimizu

    (Kumamoto University)

  • Ryoko Kawabata

    (Hiroshima University)

  • Kumiko Yoshimatsu

    (Hokkaido University)

  • Hiroyuki Asakura

    (Tokyo Metropolitan Institute of Public Health)

  • Mami Nagashima

    (Tokyo Metropolitan Institute of Public Health)

  • Kenji Sadamasu

    (Tokyo Metropolitan Institute of Public Health)

  • Kazuhisa Yoshimura

    (Tokyo Metropolitan Institute of Public Health)

  • Hirofumi Sawa

    (Hokkaido University
    Hokkaido University
    Hokkaido University
    Hokkaido University)

  • Terumasa Ikeda

    (Kumamoto University)

  • Takashi Irie

    (Hiroshima University)

  • Keita Matsuno

    (Hokkaido University
    Hokkaido University
    Hokkaido University)

  • Shinya Tanaka

    (Hokkaido University
    Hokkaido University)

  • Takasuke Fukuhara

    (Hokkaido University)

  • Kei Sato

    (The University of Tokyo
    The University of Tokyo
    CREST, Japan Science and Technology Agency)

Abstract

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell–cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.

Suggested Citation

  • Rigel Suzuki & Daichi Yamasoba & Izumi Kimura & Lei Wang & Mai Kishimoto & Jumpei Ito & Yuhei Morioka & Naganori Nao & Hesham Nasser & Keiya Uriu & Yusuke Kosugi & Masumi Tsuda & Yasuko Orba & Michihi, 2022. "Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant," Nature, Nature, vol. 603(7902), pages 700-705, March.
  • Handle: RePEc:nat:nature:v:603:y:2022:i:7902:d:10.1038_s41586-022-04462-1
    DOI: 10.1038/s41586-022-04462-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04462-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04462-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles B. Stauft & Prabhuanand Selvaraj & Felice D’Agnillo & Clement A. Meseda & Shufeng Liu & Cyntia L. Pedro & Kotou Sangare & Christopher Z. Lien & Jerry P. Weir & Matthew F. Starost & Tony T. Wan, 2023. "Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Federico Armando & Georg Beythien & Franziska K. Kaiser & Lisa Allnoch & Laura Heydemann & Malgorzata Rosiak & Svenja Becker & Mariana Gonzalez-Hernandez & Mart M. Lamers & Bart L. Haagmans & Kate Gui, 2022. "SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Tomokazu Tamura & Takashi Irie & Sayaka Deguchi & Hisano Yajima & Masumi Tsuda & Hesham Nasser & Keita Mizuma & Arnon Plianchaisuk & Saori Suzuki & Keiya Uriu & Mst Monira Begum & Ryo Shimizu & Michae, 2024. "Virological characteristics of the SARS-CoV-2 Omicron XBB.1.5 variant," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Naoko Iwata-Yoshikawa & Masatoshi Kakizaki & Nozomi Shiwa-Sudo & Takashi Okura & Maino Tahara & Shuetsu Fukushi & Ken Maeda & Miyuki Kawase & Hideki Asanuma & Yuriko Tomita & Ikuyo Takayama & Shutoku , 2022. "Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Delphine Planas & Isabelle Staropoli & Vincent Michel & Frederic Lemoine & Flora Donati & Matthieu Prot & Francoise Porrot & Florence Guivel-Benhassine & Banujaa Jeyarajah & Angela Brisebarre & Océane, 2024. "Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Sabrina Semeraro & Anastasia Serena Gaetano & Luisa Zupin & Carlo Poloni & Elvio Merlach & Enrico Greco & Sabina Licen & Francesco Fontana & Silvana Leo & Alessandro Miani & Francesco Broccolo & Pierl, 2022. "Operative Protocol for Testing the Efficacy of Nasal Filters in Preventing Airborne Transmission of SARS-CoV-2," IJERPH, MDPI, vol. 19(21), pages 1-12, October.
    9. Chihiro Motozono & Mako Toyoda & Toong Seng Tan & Hiroshi Hamana & Yoshihiko Goto & Yoshiki Aritsu & Yusuke Miyashita & Hiroyuki Oshiumi & Kimitoshi Nakamura & Seiji Okada & Keiko Udaka & Mizuki Kitam, 2022. "The SARS-CoV-2 Omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Guoli Shi & Tiansheng Li & Kin Kui Lai & Reed F. Johnson & Jonathan W. Yewdell & Alex A. Compton, 2024. "Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Jumpei Ito & Rigel Suzuki & Keiya Uriu & Yukari Itakura & Jiri Zahradnik & Kanako Terakado Kimura & Sayaka Deguchi & Lei Wang & Spyros Lytras & Tomokazu Tamura & Izumi Kida & Hesham Nasser & Maya Shof, 2023. "Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Adam Abdullahi & David Oladele & Michael Owusu & Steven A. Kemp & James Ayorinde & Abideen Salako & Douglas Fink & Fehintola Ige & Isabella A. T. M. Ferreira & Bo Meng & Augustina Angelina Sylverken &, 2022. "SARS-COV-2 antibody responses to AZD1222 vaccination in West Africa," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Nikhil Kumar Tulsian & Raghuvamsi Venkata Palur & Xinlei Qian & Yue Gu & Bhuvaneshwari D/O Shunmuganathan & Firdaus Samsudin & Yee Hwa Wong & Jianqing Lin & Kiren Purushotorman & Mary McQueen Kozma & , 2023. "Defining neutralization and allostery by antibodies against COVID-19 variants," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    14. Lays Cordeiro Guimaraes & Pedro Augusto Carvalho Costa & Sérgio Ricardo Aluotto Scalzo Júnior & Heloísa Athaydes Seabra Ferreira & Ana Carolina Soares Braga & Leonardo Camilo Oliveira & Maria Marta Fi, 2024. "Nanoparticle-based DNA vaccine protects against SARS-CoV-2 variants in female preclinical models," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Chun-Kit Yuen & Wan-Man Wong & Long-Fung Mak & Joy-Yan Lam & Lok-Yi Cheung & Derek Tsz-Yin Cheung & Yau-Yee Ng & Andrew Chak-Yiu Lee & Nanshan Zhong & Kwok-Yung Yuen & Kin-Hang Kok, 2023. "An interferon-integrated mucosal vaccine provides pan-sarbecovirus protection in small animal models," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:603:y:2022:i:7902:d:10.1038_s41586-022-04462-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.