IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7890d10.1038_s41586-021-04145-3.html
   My bibliography  Save this article

A conserved mechanism for regulating replisome disassembly in eukaryotes

Author

Listed:
  • Michael Jenkyn-Bedford

    (MRC Laboratory of Molecular Biology)

  • Morgan L. Jones

    (MRC Laboratory of Molecular Biology)

  • Yasemin Baris

    (MRC Laboratory of Molecular Biology)

  • Karim P. M. Labib

    (University of Dundee)

  • Giuseppe Cannone

    (MRC Laboratory of Molecular Biology)

  • Joseph T. P. Yeeles

    (MRC Laboratory of Molecular Biology)

  • Tom D. Deegan

    (University of Dundee
    University of Edinburgh, Western General Hospital)

Abstract

Replisome disassembly is the final step of eukaryotic DNA replication and is triggered by ubiquitylation of the CDC45–MCM–GINS (CMG) replicative helicase1–3. Despite being driven by evolutionarily diverse E3 ubiquitin ligases in different eukaryotes (SCFDia2 in budding yeast1, CUL2LRR1 in metazoa4–7), replisome disassembly is governed by a common regulatory principle, in which ubiquitylation of CMG is suppressed before replication termination, to prevent replication fork collapse. Recent evidence suggests that this suppression is mediated by replication fork DNA8–10. However, it is unknown how SCFDia2 and CUL2LRR1 discriminate terminated from elongating replisomes, to selectively ubiquitylate CMG only after termination. Here we used cryo-electron microscopy to solve high-resolution structures of budding yeast and human replisome–E3 ligase assemblies. Our structures show that the leucine-rich repeat domains of Dia2 and LRR1 are structurally distinct, but bind to a common site on CMG, including the MCM3 and MCM5 zinc-finger domains. The LRR–MCM interaction is essential for replisome disassembly and, crucially, is occluded by the excluded DNA strand at replication forks, establishing the structural basis for the suppression of CMG ubiquitylation before termination. Our results elucidate a conserved mechanism for the regulation of replisome disassembly in eukaryotes, and reveal a previously unanticipated role for DNA in preserving replisome integrity.

Suggested Citation

  • Michael Jenkyn-Bedford & Morgan L. Jones & Yasemin Baris & Karim P. M. Labib & Giuseppe Cannone & Joseph T. P. Yeeles & Tom D. Deegan, 2021. "A conserved mechanism for regulating replisome disassembly in eukaryotes," Nature, Nature, vol. 600(7890), pages 743-747, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04145-3
    DOI: 10.1038/s41586-021-04145-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04145-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04145-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhichun Xu & Jianrong Feng & Daqi Yu & Yunjing Huo & Xiaohui Ma & Wai Hei Lam & Zheng Liu & Xiang David Li & Toyotaka Ishibashi & Shangyu Dang & Yuanliang Zhai, 2023. "Synergism between CMG helicase and leading strand DNA polymerase at replication fork," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Daniel Ramírez Montero & Humberto Sánchez & Edo Veen & Theo Laar & Belén Solano & John F. X. Diffley & Nynke H. Dekker, 2023. "Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7890:d:10.1038_s41586-021-04145-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.