IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v600y2021i7889d10.1038_s41586-021-03981-7.html
   My bibliography  Save this article

Biogeochemical extremes and compound events in the ocean

Author

Listed:
  • Nicolas Gruber

    (Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich)

  • Philip W. Boyd

    (University of Tasmania)

  • Thomas L. Frölicher

    (University of Bern
    University of Bern)

  • Meike Vogt

    (Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich)

Abstract

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events—that is, multiple extreme events that occur simultaneously or in close sequence—are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.

Suggested Citation

  • Nicolas Gruber & Philip W. Boyd & Thomas L. Frölicher & Meike Vogt, 2021. "Biogeochemical extremes and compound events in the ocean," Nature, Nature, vol. 600(7889), pages 395-407, December.
  • Handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-03981-7
    DOI: 10.1038/s41586-021-03981-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03981-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03981-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Andrea Storto & Chunxue Yang, 2024. "Acceleration of the ocean warming from 1961 to 2022 unveiled by large-ensemble reanalyses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Sauterey, Boris & Gland, Guillaume Le & Cermeño, Pedro & Aumont, Olivier & Lévy, Marina & Vallina, Sergio M., 2023. "Phytoplankton adaptive resilience to climate change collapses in case of extreme events – A modeling study," Ecological Modelling, Elsevier, vol. 483(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:600:y:2021:i:7889:d:10.1038_s41586-021-03981-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.