IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v597y2021i7878d10.1038_s41586-021-03933-1.html
   My bibliography  Save this article

Genetic and epigenetic coordination of cortical interneuron development

Author

Listed:
  • Kathryn C. Allaway

    (New York University
    Harvard Medical School
    Broad Institute)

  • Mariano I. Gabitto

    (Flatiron Institute, Simons Foundation)

  • Orly Wapinski

    (Broad Institute)

  • Giuseppe Saldi

    (Harvard Medical School
    Broad Institute
    New York University)

  • Chen-Yu Wang

    (Harvard Medical School
    Broad Institute)

  • Rachel C. Bandler

    (New York University
    Harvard Medical School
    Broad Institute)

  • Sherry Jingjing Wu

    (Harvard Medical School
    Broad Institute)

  • Richard Bonneau

    (Flatiron Institute, Simons Foundation
    New York University
    New York University)

  • Gord Fishell

    (Harvard Medical School
    Broad Institute)

Abstract

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1–3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4–11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.

Suggested Citation

  • Kathryn C. Allaway & Mariano I. Gabitto & Orly Wapinski & Giuseppe Saldi & Chen-Yu Wang & Rachel C. Bandler & Sherry Jingjing Wu & Richard Bonneau & Gord Fishell, 2021. "Genetic and epigenetic coordination of cortical interneuron development," Nature, Nature, vol. 597(7878), pages 693-697, September.
  • Handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03933-1
    DOI: 10.1038/s41586-021-03933-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03933-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03933-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeinab Asgarian & Marcio Guiomar Oliveira & Agata Stryjewska & Ioannis Maragkos & Anna Noren Rubin & Lorenza Magno & Vassilis Pachnis & Mohammadmersad Ghorbani & Scott Wayne Hiebert & Myrto Denaxa & N, 2022. "MTG8 interacts with LHX6 to specify cortical interneuron subtype identity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Tulsi Patel & Jennifer Hammelman & Siaresh Aziz & Sumin Jang & Michael Closser & Theodore L. Michaels & Jacob A. Blum & David K. Gifford & Hynek Wichterle, 2022. "Transcriptional dynamics of murine motor neuron maturation in vivo and in vitro," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Christopher T. Rhodes & Joyce J. Thompson & Apratim Mitra & Dhanya Asokumar & Dongjin R. Lee & Daniel J. Lee & Yajun Zhang & Eva Jason & Ryan K. Dale & Pedro P. Rocha & Timothy J. Petros, 2022. "An epigenome atlas of neural progenitors within the embryonic mouse forebrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:597:y:2021:i:7878:d:10.1038_s41586-021-03933-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.