IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v591y2021i7849d10.1038_s41586-021-03250-7.html
   My bibliography  Save this article

Measurement of gravitational coupling between millimetre-sized masses

Author

Listed:
  • Tobias Westphal

    (Austrian Academy of Sciences)

  • Hans Hepach

    (Austrian Academy of Sciences)

  • Jeremias Pfaff

    (University of Vienna)

  • Markus Aspelmeyer

    (Austrian Academy of Sciences
    University of Vienna
    University of Vienna)

Abstract

Gravity is the weakest of all known fundamental forces and poses some of the most important open questions to modern physics: it remains resistant to unification within the standard model of physics and its underlying concepts appear to be fundamentally disconnected from quantum theory1–4. Testing gravity at all scales is therefore an important experimental endeavour5–7. So far, these tests have mainly involved macroscopic masses at the kilogram scale and beyond8. Here we show gravitational coupling between two gold spheres of 1 millimetre radius, thereby entering the regime of sub-100-milligram sources of gravity. Periodic modulation of the position of the source mass allows us to perform a spatial mapping of the gravitational force. Both linear and quadratic coupling are observed as a consequence of the nonlinearity of the gravitational potential. Our results extend the parameter space of gravity measurements to small, single source masses and low gravitational field strengths. Further improvements to our methodology will enable the isolation of gravity as a coupling force for objects below the Planck mass. This work opens the way to the unexplored frontier of microscopic source masses, which will enable studies of fundamental interactions9–11 and provide a path towards exploring the quantum nature of gravity12–15.

Suggested Citation

  • Tobias Westphal & Hans Hepach & Jeremias Pfaff & Markus Aspelmeyer, 2021. "Measurement of gravitational coupling between millimetre-sized masses," Nature, Nature, vol. 591(7849), pages 225-228, March.
  • Handle: RePEc:nat:nature:v:591:y:2021:i:7849:d:10.1038_s41586-021-03250-7
    DOI: 10.1038/s41586-021-03250-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03250-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03250-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Oppenheim & Carlo Sparaciari & Barbara Šoda & Zachary Weller-Davies, 2023. "Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    2. Zhujing Xu & Peng Ju & Xingyu Gao & Kunhong Shen & Zubin Jacob & Tongcang Li, 2022. "Observation and control of Casimir effects in a sphere-plate-sphere system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:591:y:2021:i:7849:d:10.1038_s41586-021-03250-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.