IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7842d10.1038_s41586-020-03128-0.html
   My bibliography  Save this article

Lessons from the host defences of bats, a unique viral reservoir

Author

Listed:
  • Aaron T. Irving

    (Duke-NUS Medical School
    Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University
    Zhejiang University School of Medicine)

  • Matae Ahn

    (Duke-NUS Medical School)

  • Geraldine Goh

    (Duke-NUS Medical School)

  • Danielle E. Anderson

    (Duke-NUS Medical School)

  • Lin-Fa Wang

    (Duke-NUS Medical School
    SingHealth Duke-NUS Global Health Institute)

Abstract

There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)—as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats—the only flying mammal—display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.

Suggested Citation

  • Aaron T. Irving & Matae Ahn & Geraldine Goh & Danielle E. Anderson & Lin-Fa Wang, 2021. "Lessons from the host defences of bats, a unique viral reservoir," Nature, Nature, vol. 589(7842), pages 363-370, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-03128-0
    DOI: 10.1038/s41586-020-03128-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03128-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03128-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Andrew Spring & Erin Nelson & Irena Knezevic & Patricia Ballamingie & Alison Blay-Palmer, 2021. "Special Issue “Levering Sustainable Food Systems to Address Climate Change (Pandemics and Other Shocks and Hazards): Possible Transformations”," Sustainability, MDPI, vol. 13(15), pages 1-6, July.
    3. Wenjuan Dong & Jing Wang & Lei Tian & Jianying Zhang & Erik W. Settles & Chao Qin & Daniel R. Steinken-Kollath & Ashley N. Itogawa & Kimberly R. Celona & Jinhee Yi & Mitchell Bryant & Heather Mead & S, 2023. "Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Mendes, Pedro B. & Boeger, Walter A., 2022. "Game dynamics as a driver for pathogen spillover pulses," Ecological Modelling, Elsevier, vol. 473(C).
    5. Jonathan C. Guito & Shannon G. M. Kirejczyk & Amy J. Schuh & Brian R. Amman & Tara K. Sealy & James Graziano & Jessica R. Spengler & Jessica R. Harmon & David M. Wozniak & Joseph B. Prescott & Jonatha, 2024. "Coordinated inflammatory responses dictate Marburg virus control by reservoir bats," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-03128-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.