IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v588y2020i7839d10.1038_s41586-020-3030-1.html
   My bibliography  Save this article

Plasmonic topological quasiparticle on the nanometre and femtosecond scales

Author

Listed:
  • Yanan Dai

    (University of Pittsburgh
    University of Pittsburgh)

  • Zhikang Zhou

    (University of Pittsburgh
    University of Pittsburgh)

  • Atreyie Ghosh

    (University of Pittsburgh
    University of Pittsburgh)

  • Roger S. K. Mong

    (University of Pittsburgh
    University of Pittsburgh)

  • Atsushi Kubo

    (University of Tsukuba)

  • Chen-Bin Huang

    (National Tsing Hua University)

  • Hrvoje Petek

    (University of Pittsburgh
    University of Pittsburgh)

Abstract

At the interface of classical and quantum physics, the Maxwell and Schrödinger equations describe how optical fields drive and control electronic phenomena to enable lightwave electronics at terahertz or petahertz frequencies and on ultrasmall scales1–5. The electric field of light striking a metal interacts with electrons and generates light–matter quasiparticles, such as excitons6 or plasmons7, on an attosecond timescale. Here we create and image a quasiparticle of topological plasmonic spin texture in a structured silver film. The spin angular momentum components of linearly polarized light interacting with an Archimedean coupling structure with a designed geometric phase generate plasmonic waves with different orbital angular momenta. These plasmonic fields undergo spin–orbit interaction and their superposition generates an array of plasmonic vortices. Three of these vortices can form spin textures that carry non-trivial topological charge8 resembling magnetic meron quasiparticles9. These spin textures are localized within a half-wavelength of light, and exist on the timescale of the plasmonic field. We use ultrafast nonlinear coherent photoelectron microscopy to generate attosecond videos of the spatial evolution of the vortex fields; electromagnetic simulations and analytic theory confirm the presence of plasmonic meron quasiparticles. The quasiparticles form a chiral field, which breaks the time-reversal symmetry on a nanometre spatial scale and a 20-femtosecond timescale (the ‘nano-femto scale’). This transient creation of non-trivial spin angular momentum topology pertains to cosmological structure creation and topological phase transitions in quantum matter10–12, and may transduce quantum information on the nano-femto scale13,14.

Suggested Citation

  • Yanan Dai & Zhikang Zhou & Atreyie Ghosh & Roger S. K. Mong & Atsushi Kubo & Chen-Bin Huang & Hrvoje Petek, 2020. "Plasmonic topological quasiparticle on the nanometre and femtosecond scales," Nature, Nature, vol. 588(7839), pages 616-619, December.
  • Handle: RePEc:nat:nature:v:588:y:2020:i:7839:d:10.1038_s41586-020-3030-1
    DOI: 10.1038/s41586-020-3030-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-3030-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-3030-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaolong Li & Pengzuo Jiang & Xiaying Lyu & Xiaofang Li & Huixin Qi & Jinglin Tang & Zhaohang Xue & Hong Yang & Guowei Lu & Quan Sun & Xiaoyong Hu & Yunan Gao & Qihuang Gong, 2023. "Revealing low-loss dielectric near-field modes of hexagonal boron nitride by photoemission electron microscopy," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yang Luo & Frank Neubrech & Alberto Martin-Jimenez & Na Liu & Klaus Kern & Manish Garg, 2024. "Real-time tracking of coherent oscillations of electrons in a nanodevice by photo-assisted tunnelling," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Philip A. Thomas & Kishan S. Menghrajani & William L. Barnes, 2022. "All-optical control of phase singularities using strong light-matter coupling," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:588:y:2020:i:7839:d:10.1038_s41586-020-3030-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.