IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7799d10.1038_s41586-020-2088-0.html
   My bibliography  Save this article

Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome

Author

Listed:
  • Felix R. Wagner

    (Department of Molecular Biology)

  • Christian Dienemann

    (Department of Molecular Biology)

  • Haibo Wang

    (Department of Molecular Biology)

  • Alexandra Stützer

    (Bioanalytical Mass Spectrometry)

  • Dimitry Tegunov

    (Department of Molecular Biology)

  • Henning Urlaub

    (Bioanalytical Mass Spectrometry
    University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group)

  • Patrick Cramer

    (Department of Molecular Biology)

Abstract

Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and −1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase–nucleosome interactions to regulate RSC activity5. The RSC–nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.

Suggested Citation

  • Felix R. Wagner & Christian Dienemann & Haibo Wang & Alexandra Stützer & Dimitry Tegunov & Henning Urlaub & Patrick Cramer, 2020. "Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome," Nature, Nature, vol. 579(7799), pages 448-451, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2088-0
    DOI: 10.1038/s41586-020-2088-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2088-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2088-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marios G. Koliopoulos & Reyhan Muhammad & Theodoros I. Roumeliotis & Fabienne Beuron & Jyoti S. Choudhary & Claudio Alfieri, 2022. "Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Sofía Muñoz & Andrew Jones & Céline Bouchoux & Tegan Gilmore & Harshil Patel & Frank Uhlmann, 2022. "Functional crosstalk between the cohesin loader and chromatin remodelers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Dominik Laubscher & Berkley E. Gryder & Benjamin D. Sunkel & Thorkell Andresson & Marco Wachtel & Sudipto Das & Bernd Roschitzki & Witold Wolski & Xiaoli S. Wu & Hsien-Chao Chou & Young K. Song & Chao, 2021. "BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Li Wang & Jiali Yu & Zishuo Yu & Qianmin Wang & Wanjun Li & Yulei Ren & Zhenguo Chen & Shuang He & Yanhui Xu, 2022. "Structure of nucleosome-bound human PBAF complex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7799:d:10.1038_s41586-020-2088-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.