IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v577y2020i7790d10.1038_s41586-019-1894-8.html
   My bibliography  Save this article

The arms race between bacteria and their phage foes

Author

Listed:
  • Hannah G. Hampton

    (University of Otago)

  • Bridget N. J. Watson

    (University of Otago
    University of Exeter, Cornwall Campus)

  • Peter C. Fineran

    (University of Otago)

Abstract

Bacteria are under immense evolutionary pressure from their viral invaders—bacteriophages. Bacteria have evolved numerous immune mechanisms, both innate and adaptive, to cope with this pressure. The discovery and exploitation of CRISPR–Cas systems have stimulated a resurgence in the identification and characterization of anti-phage mechanisms. Bacteriophages use an extensive battery of counter-defence strategies to co-exist in the presence of these diverse phage defence mechanisms. Understanding the dynamics of the interactions between these microorganisms has implications for phage-based therapies, microbial ecology and evolution, and the development of new biotechnological tools. Here we review the spectrum of anti-phage systems and highlight their evasion by bacteriophages.

Suggested Citation

  • Hannah G. Hampton & Bridget N. J. Watson & Peter C. Fineran, 2020. "The arms race between bacteria and their phage foes," Nature, Nature, vol. 577(7790), pages 327-336, January.
  • Handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1894-8
    DOI: 10.1038/s41586-019-1894-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1894-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1894-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca Conners & Mathew McLaren & Urszula Łapińska & Kelly Sanders & M. Rhia L. Stone & Mark A. T. Blaskovich & Stefano Pagliara & Bertram Daum & Jasna Rakonjac & Vicki A. M. Gold, 2021. "CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Suguru Nishijima & Naoyoshi Nagata & Yuya Kiguchi & Yasushi Kojima & Tohru Miyoshi-Akiyama & Moto Kimura & Mitsuru Ohsugi & Kohjiro Ueki & Shinichi Oka & Masashi Mizokami & Takao Itoi & Takashi Kawai , 2022. "Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Ming Yan & Akbar Adjie Pratama & Sripoorna Somasundaram & Zongjun Li & Yu Jiang & Matthew B. Sullivan & Zhongtang Yu, 2023. "Interrogating the viral dark matter of the rumen ecosystem with a global virome database," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Mingfang Bi & Wenjing Su & Jiafu Li & Xiaobing Mo, 2024. "Insights into the inhibition of protospacer integration via direct interaction between Cas2 and AcrVA5," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Tzu-Ping Ko & Yu-Chuan Wang & Chia-Shin Yang & Mei-Hui Hou & Chao-Jung Chen & Yi-Fang Chiu & Yeh Chen, 2022. "Crystal structure and functional implication of bacterial STING," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Jiemin Du & Susanne Meile & Jasmin Baggenstos & Tobias Jäggi & Pietro Piffaretti & Laura Hunold & Cassandra I. Matter & Lorenz Leitner & Thomas M. Kessler & Martin J. Loessner & Samuel Kilcher & Matth, 2023. "Enhancing bacteriophage therapeutics through in situ production and release of heterologous antimicrobial effectors," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Ning Duan & Emily Hand & Mannuku Pheko & Shikha Sharma & Akintunde Emiola, 2024. "Structure-guided discovery of anti-CRISPR and anti-phage defense proteins," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Evan A. Schwartz & Tess M. McBride & Jack P. K. Bravo & Daniel Wrapp & Peter C. Fineran & Robert D. Fagerlund & David W. Taylor, 2022. "Structural rearrangements allow nucleic acid discrimination by type I-D Cascade," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Jack P. K. Bravo & Cristian Aparicio-Maldonado & Franklin L. Nobrega & Stan J. J. Brouns & David W. Taylor, 2022. "Structural basis for broad anti-phage immunity by DISARM," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Yoann G. Santin & Adrià Sogues & Yvann Bourigault & Han K. Remaut & Géraldine Laloux, 2024. "Lifecycle of a predatory bacterium vampirizing its prey through the cell envelope and S-layer," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Clemente F. Arias & Francisco J. Acosta & Federica Bertocchini & Miguel A. Herrero & Cristina Fernández-Arias, 2022. "The coordination of anti-phage immunity mechanisms in bacterial cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xuan Zou & Xiaohong Xiao & Ziran Mo & Yashi Ge & Xing Jiang & Ruolin Huang & Mengxue Li & Zixin Deng & Shi Chen & Lianrong Wang & Sang Yup Lee, 2022. "Systematic strategies for developing phage resistant Escherichia coli strains," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:577:y:2020:i:7790:d:10.1038_s41586-019-1894-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.