IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7784d10.1038_s41586-019-1709-y.html
   My bibliography  Save this article

A gated quantum dot strongly coupled to an optical microcavity

Author

Listed:
  • Daniel Najer

    (University of Basel)

  • Immo Söllner

    (University of Basel)

  • Pavel Sekatski

    (University of Basel)

  • Vincent Dolique

    (Université de Lyon)

  • Matthias C. Löbl

    (University of Basel)

  • Daniel Riedel

    (University of Basel)

  • Rüdiger Schott

    (Ruhr-Universität Bochum)

  • Sebastian Starosielec

    (University of Basel)

  • Sascha R. Valentin

    (Ruhr-Universität Bochum)

  • Andreas D. Wieck

    (Ruhr-Universität Bochum)

  • Nicolas Sangouard

    (University of Basel)

  • Arne Ludwig

    (Ruhr-Universität Bochum)

  • Richard J. Warburton

    (University of Basel)

Abstract

The strong-coupling regime of cavity quantum electrodynamics (QED) represents the light–matter interaction at the fully quantum level. Adding a single photon shifts the resonance frequencies—a profound nonlinearity. Cavity QED is a test bed for quantum optics1–3 and the basis of photon–photon and atom–atom entangling gates4,5. At microwave frequencies, cavity QED has had a transformative effect6, enabling qubit readout and qubit couplings in superconducting circuits. At optical frequencies, the gates are potentially much faster; the photons can propagate over long distances and can be easily detected. Following pioneering work on single atoms1–3,7, solid-state implementations using semiconductor quantum dots are emerging8–15. However, miniaturizing semiconductor cavities without introducing charge noise and scattering losses remains a challenge. Here we present a gated, ultralow-loss, frequency-tunable microcavity device. The gates allow both the quantum dot charge and its resonance frequency to be controlled electrically. Furthermore, cavity feeding10,11,13–17, the observation of the bare-cavity mode even at the quantum dot–cavity resonance, is eliminated. Even inside the microcavity, the quantum dot has a linewidth close to the radiative limit. In addition to a very pronounced avoided crossing in the spectral domain, we observe a clear coherent exchange of a single energy quantum between the ‘atom’ (the quantum dot) and the cavity in the time domain (vacuum Rabi oscillations), whereas decoherence arises mainly via the atom and photon loss channels. This coherence is exploited to probe the transitions between the singly and doubly excited photon–atom system using photon-statistics spectroscopy18. The work establishes a route to the development of semiconductor-based quantum photonics, such as single-photon sources and photon–photon gates.

Suggested Citation

  • Daniel Najer & Immo Söllner & Pavel Sekatski & Vincent Dolique & Matthias C. Löbl & Daniel Riedel & Rüdiger Schott & Sebastian Starosielec & Sascha R. Valentin & Andreas D. Wieck & Nicolas Sangouard &, 2019. "A gated quantum dot strongly coupled to an optical microcavity," Nature, Nature, vol. 575(7784), pages 622-627, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1709-y
    DOI: 10.1038/s41586-019-1709-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1709-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1709-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcus Ossiander & Maryna Leonidivna Meretska & Sarah Rourke & Christina Spägele & Xinghui Yin & Ileana-Cristina Benea-Chelmus & Federico Capasso, 2023. "Metasurface-stabilized optical microcavities," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. N. Bart & C. Dangel & P. Zajac & N. Spitzer & J. Ritzmann & M. Schmidt & H. G. Babin & R. Schott & S. R. Valentin & S. Scholz & Y. Wang & R. Uppu & D. Najer & M. C. Löbl & N. Tomm & A. Javadi & N. O. , 2022. "Wafer-scale epitaxial modulation of quantum dot density," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7784:d:10.1038_s41586-019-1709-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.