IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v573y2019i7775d10.1038_s41586-019-1558-8.html
   My bibliography  Save this article

Aridity is expressed in river topography globally

Author

Listed:
  • Shiuan-An Chen

    (University of Bristol)

  • Katerina Michaelides

    (University of Bristol
    University of California Santa Barbara)

  • Stuart W. D. Grieve

    (School of Geography, Queen Mary University of London)

  • Michael Bliss Singer

    (University of California Santa Barbara
    Cardiff University
    Cardiff University)

Abstract

It has long been suggested that climate shapes land surface topography through interactions between rainfall, runoff and erosion in drainage basins1–4. The longitudinal profile of a river (elevation versus distance downstream) is a key morphological attribute that reflects the history of drainage basin evolution, so its form should be diagnostic of the regional expression of climate and its interaction with the land surface5–9. However, both detecting climatic signatures in longitudinal profiles and deciphering the climatic mechanisms of their development have been challenging, owing to the lack of relevant global data and to the variable effects of tectonics, lithology, land surface properties and human activities10,11. Here we present a global dataset of 333,502 river longitudinal profiles, and use it to explore differences in overall profile shape (concavity) across climate zones. We show that river profiles are systematically straighter with increasing aridity. Through simple numerical modelling, we demonstrate that these global patterns in longitudinal profile shape can be explained by hydrological controls that reflect rainfall–runoff regimes in different climate zones. The most important of these is the downstream rate of change in streamflow, independent of the area of the drainage basin. Our results illustrate that river topography expresses a signature of aridity, suggesting that climate is a first-order control on the evolution of the drainage basin.

Suggested Citation

  • Shiuan-An Chen & Katerina Michaelides & Stuart W. D. Grieve & Michael Bliss Singer, 2019. "Aridity is expressed in river topography globally," Nature, Nature, vol. 573(7775), pages 573-577, September.
  • Handle: RePEc:nat:nature:v:573:y:2019:i:7775:d:10.1038_s41586-019-1558-8
    DOI: 10.1038/s41586-019-1558-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1558-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1558-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Alexander T. Michalek & Gabriele Villarini & Admin Husic, 2023. "Climate change projected to impact structural hillslope connectivity at the global scale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:573:y:2019:i:7775:d:10.1038_s41586-019-1558-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.