IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v572y2019i7769d10.1038_s41586-019-1364-3.html
   My bibliography  Save this article

Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target

Author

Listed:
  • Dan Tong

    (University of California
    Tsinghua University)

  • Qiang Zhang

    (Tsinghua University)

  • Yixuan Zheng

    (Tsinghua University
    Carnegie Institution for Science)

  • Ken Caldeira

    (Carnegie Institution for Science)

  • Christine Shearer

    (Global Energy Monitor)

  • Chaopeng Hong

    (University of California)

  • Yue Qin

    (University of California)

  • Steven J. Davis

    (University of California
    Tsinghua University
    University of California)

Abstract

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1–5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already ‘committed’ future CO2 emissions6–13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37–427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420–580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170–1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.

Suggested Citation

  • Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
  • Handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1364-3
    DOI: 10.1038/s41586-019-1364-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1364-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1364-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:572:y:2019:i:7769:d:10.1038_s41586-019-1364-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.