IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7763d10.1038_s41586-019-1339-4.html
   My bibliography  Save this article

Sensitization of silicon by singlet exciton fission in tetracene

Author

Listed:
  • Markus Einzinger

    (Massachusetts Institute of Technology (MIT))

  • Tony Wu

    (Massachusetts Institute of Technology (MIT))

  • Julia F. Kompalla

    (Massachusetts Institute of Technology (MIT))

  • Hannah L. Smith

    (Princeton University)

  • Collin F. Perkinson

    (Massachusetts Institute of Technology (MIT))

  • Lea Nienhaus

    (Massachusetts Institute of Technology (MIT))

  • Sarah Wieghold

    (Massachusetts Institute of Technology)

  • Daniel N. Congreve

    (Massachusetts Institute of Technology (MIT)
    Harvard University)

  • Antoine Kahn

    (Princeton University)

  • Moungi G. Bawendi

    (Massachusetts Institute of Technology (MIT))

  • Marc A. Baldo

    (Massachusetts Institute of Technology (MIT))

Abstract

Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3–5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6–8. When the triplet excitons are transferred to silicon they create additional electron–hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate.

Suggested Citation

  • Markus Einzinger & Tony Wu & Julia F. Kompalla & Hannah L. Smith & Collin F. Perkinson & Lea Nienhaus & Sarah Wieghold & Daniel N. Congreve & Antoine Kahn & Moungi G. Bawendi & Marc A. Baldo, 2019. "Sensitization of silicon by singlet exciton fission in tetracene," Nature, Nature, vol. 571(7763), pages 90-94, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7763:d:10.1038_s41586-019-1339-4
    DOI: 10.1038/s41586-019-1339-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1339-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1339-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiying He & Emily M. Churchill & Kaia R. Parenti & Jocelyn Zhang & Pournima Narayanan & Faridah Namata & Michael Malkoch & Daniel N. Congreve & Angelo Cacciuto & Matthew Y. Sfeir & Luis M. Campos, 2023. "Promoting multiexciton interactions in singlet fission and triplet fusion upconversion dendrimers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. J. Perego & Charl X. Bezuidenhout & I. Villa & F. Cova & R. Crapanzano & I. Frank & F. Pagano & N. Kratochwill & E. Auffray & S. Bracco & A. Vedda & C. Dujardin & P. E. Sozzani & F. Meinardi & A. Como, 2022. "Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7763:d:10.1038_s41586-019-1339-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.