IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7748d10.1038_s41586-019-0943-7.html
   My bibliography  Save this article

Photonic topological insulator in synthetic dimensions

Author

Listed:
  • Eran Lustig

    (Technion–Israel Institute of Technology)

  • Steffen Weimann

    (Universität Rostock)

  • Yonatan Plotnik

    (Technion–Israel Institute of Technology)

  • Yaakov Lumer

    (University of Pennsylvania)

  • Miguel A. Bandres

    (Technion–Israel Institute of Technology)

  • Alexander Szameit

    (Universität Rostock)

  • Mordechai Segev

    (Technion–Israel Institute of Technology)

Abstract

Topological phases enable protected transport along the edges of materials, offering immunity against scattering from disorder and imperfections. These phases have been demonstrated for electronic systems, electromagnetic waves1–5, cold atoms6,7, acoustics8 and even mechanics9, and their potential applications include spintronics, quantum computing and highly efficient lasers10–12. Typically, the model describing topological insulators is a spatial lattice in two or three dimensions. However, topological edge states have also been observed in a lattice with one spatial dimension and one synthetic dimension (corresponding to the spin modes of an ultracold atom13–15), and atomic modes have been used as synthetic dimensions to demonstrate lattice models and physical phenomena that are not accessible to experiments in spatial lattices13,16,17. In photonics, topological lattices with synthetic dimensions have been proposed for the study of physical phenomena in high dimensions and interacting photons18–22, but so far photonic topological insulators in synthetic dimensions have not been observed. Here we demonstrate experimentally a photonic topological insulator in synthetic dimensions. We fabricate a photonic lattice in which photons are subjected to an effective magnetic field in a space with one spatial dimension and one synthetic modal dimension. Our scheme supports topological edge states in this spatial-modal lattice, resulting in a robust topological state that extends over the bulk of a two-dimensional real-space lattice. Our system can be used to increase the dimensionality of a photonic lattice and induce long-range coupling by design, leading to lattice models that can be used to study unexplored physical phenomena.

Suggested Citation

  • Eran Lustig & Steffen Weimann & Yonatan Plotnik & Yaakov Lumer & Miguel A. Bandres & Alexander Szameit & Mordechai Segev, 2019. "Photonic topological insulator in synthetic dimensions," Nature, Nature, vol. 567(7748), pages 356-360, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-0943-7
    DOI: 10.1038/s41586-019-0943-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0943-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0943-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7748:d:10.1038_s41586-019-0943-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.