IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7747d10.1038_s41586-019-0980-2.html
   My bibliography  Save this article

Supervised learning with quantum-enhanced feature spaces

Author

Listed:
  • Vojtěch Havlíček

    (IBM T. J. Watson Research Center
    University of Oxford)

  • Antonio D. Córcoles

    (IBM T. J. Watson Research Center)

  • Kristan Temme

    (IBM T. J. Watson Research Center)

  • Aram W. Harrow

    (Massachusetts Institute of Technology)

  • Abhinav Kandala

    (IBM T. J. Watson Research Center)

  • Jerry M. Chow

    (IBM T. J. Watson Research Center)

  • Jay M. Gambetta

    (IBM T. J. Watson Research Center)

Abstract

Machine learning and quantum computing are two technologies that each have the potential to alter how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous in pattern recognition, with support vector machines (SVMs) being the best known method for classification problems. However, there are limitations to the successful solution to such classification problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element in the computational speed-ups enabled by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here we propose and experimentally implement two quantum algorithms on a superconducting processor. A key component in both methods is the use of the quantum state space as feature space. The use of a quantum-enhanced feature space that is only efficiently accessible on a quantum computer provides a possible path to quantum advantage. The algorithms solve a problem of supervised learning: the construction of a classifier. One method, the quantum variational classifier, uses a variational quantum circuit1,2 to classify the data in a way similar to the method of conventional SVMs. The other method, a quantum kernel estimator, estimates the kernel function on the quantum computer and optimizes a classical SVM. The two methods provide tools for exploring the applications of noisy intermediate-scale quantum computers3 to machine learning.

Suggested Citation

  • Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0980-2
    DOI: 10.1038/s41586-019-0980-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-0980-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-0980-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    2. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    3. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    4. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    5. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    6. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    8. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    9. Taylor, Richard D., 2020. "Quantum Artificial Intelligence: A “precautionary” U.S. approach?," Telecommunications Policy, Elsevier, vol. 44(6).
    10. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_s41586-019-0980-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.