IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v567y2019i7747d10.1038_d41586-019-00771-0.html
   My bibliography  Save this article

Machine learning in quantum spaces

Author

Listed:
  • Maria Schuld

Abstract

Ordinary computers can perform machine learning by comparing mathematical representations of data. An experiment demonstrates how quantum computing could use quantum-mechanical representations instead.

Suggested Citation

  • Maria Schuld, 2019. "Machine learning in quantum spaces," Nature, Nature, vol. 567(7747), pages 179-181, March.
  • Handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_d41586-019-00771-0
    DOI: 10.1038/d41586-019-00771-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/d41586-019-00771-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/d41586-019-00771-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    2. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    3. Johannes Herrmann & Sergi Masot Llima & Ants Remm & Petr Zapletal & Nathan A. McMahon & Colin Scarato & François Swiadek & Christian Kraglund Andersen & Christoph Hellings & Sebastian Krinner & Nathan, 2022. "Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Jonas Jäger & Roman V. Krems, 2023. "Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Domenico Pomarico & Annarita Fanizzi & Nicola Amoroso & Roberto Bellotti & Albino Biafora & Samantha Bove & Vittorio Didonna & Daniele La Forgia & Maria Irene Pastena & Pasquale Tamborra & Alfredo Zit, 2021. "A Proposal of Quantum-Inspired Machine Learning for Medical Purposes: An Application Case," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    6. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    8. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Boualem Djehiche & Björn Löfdahl, 2021. "Quantum Support Vector Regression for Disability Insurance," Risks, MDPI, vol. 9(12), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:567:y:2019:i:7747:d:10.1038_d41586-019-00771-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.