IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v563y2018i7733d10.1038_s41586-018-0727-5.html
   My bibliography  Save this article

Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north

Author

Listed:
  • Christo Buizert

    (Oregon State University)

  • Michael Sigl

    (Paul Scherrer Institute)

  • Mirko Severi

    (University of Florence)

  • Bradley R. Markle

    (University of Washington)

  • Justin J. Wettstein

    (Oregon State University
    University of Bergen)

  • Joseph R. McConnell

    (Nevada System of Higher Education)

  • Joel B. Pedro

    (University of Copenhagen
    University of Tasmania)

  • Harald Sodemann

    (University of Bergen)

  • Kumiko Goto-Azuma

    (National Institute for Polar Research)

  • Kenji Kawamura

    (National Institute for Polar Research)

  • Shuji Fujita

    (National Institute for Polar Research)

  • Hideaki Motoyama

    (National Institute for Polar Research)

  • Motohiro Hirabayashi

    (National Institute for Polar Research)

  • Ryu Uemura

    (Biology and Marine Science, University of the Ryukyus)

  • Barbara Stenni

    (Informatics and Statistics, Ca’ Foscari University of Venice)

  • Frédéric Parrenin

    (Université Grenoble Alpes, CNRS, IRD, IGE)

  • Feng He

    (Oregon State University
    University of Wisconsin-Madison)

  • T. J. Fudge

    (University of Washington)

  • Eric J. Steig

    (University of Washington)

Abstract

The mid-latitude westerly winds of the Southern Hemisphere play a central role in the global climate system via Southern Ocean upwelling1, carbon exchange with the deep ocean2, Agulhas leakage (transport of Indian Ocean waters into the Atlantic)3 and possibly Antarctic ice-sheet stability4. Meridional shifts of the Southern Hemisphere westerly winds have been hypothesized to occur5,6 in parallel with the well-documented shifts of the intertropical convergence zone7 in response to Dansgaard–Oeschger (DO) events— abrupt North Atlantic climate change events of the last ice age. Shifting moisture pathways to West Antarctica8 are consistent with this view but may represent a Pacific teleconnection pattern forced from the tropics9. The full response of the Southern Hemisphere atmospheric circulation to the DO cycle and its impact on Antarctic temperature remain unclear10. Here we use five ice cores synchronized via volcanic markers to show that the Antarctic temperature response to the DO cycle can be understood as the superposition of two modes: a spatially homogeneous oceanic ‘bipolar seesaw’ mode that lags behind Northern Hemisphere climate by about 200 years, and a spatially heterogeneous atmospheric mode that is synchronous with abrupt events in the Northern Hemisphere. Temperature anomalies of the atmospheric mode are similar to those associated with present-day Southern Annular Mode variability, rather than the Pacific–South American pattern. Moreover, deuterium-excess records suggest a zonally coherent migration of the Southern Hemisphere westerly winds over all ocean basins in phase with Northern Hemisphere climate. Our work provides a simple conceptual framework for understanding circum-Antarctic temperature variations forced by abrupt Northern Hemisphere climate change. We provide observational evidence of abrupt shifts in the Southern Hemisphere westerly winds, which have previously documented1–3 ramifications for global ocean circulation and atmospheric carbon dioxide. These coupled changes highlight the necessity of a global, rather than a purely North Atlantic, perspective on the DO cycle.

Suggested Citation

  • Christo Buizert & Michael Sigl & Mirko Severi & Bradley R. Markle & Justin J. Wettstein & Joseph R. McConnell & Joel B. Pedro & Harald Sodemann & Kumiko Goto-Azuma & Kenji Kawamura & Shuji Fujita & Hi, 2018. "Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north," Nature, Nature, vol. 563(7733), pages 681-685, November.
  • Handle: RePEc:nat:nature:v:563:y:2018:i:7733:d:10.1038_s41586-018-0727-5
    DOI: 10.1038/s41586-018-0727-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0727-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0727-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyu Dong & Gayatri Kathayat & Sune O. Rasmussen & Anders Svensson & Jeffrey P. Severinghaus & Hanying Li & Ashish Sinha & Yao Xu & Haiwei Zhang & Zhengguo Shi & Yanjun Cai & Carlos Pérez-Mejías & Jon, 2022. "Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Abhijith U. Venugopal & Nancy A. N. Bertler & Jeffrey P. Severinghaus & Edward J. Brook & Giuseppe Cortese & James E. Lee & Thomas Blunier & Paul A. Mayewski & Helle A. Kjær & Lionel Carter & Michael , 2023. "Antarctic evidence for an abrupt northward shift of the Southern Hemisphere westerlies at 32 ka BP," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Ilaria Crotti & Aurélien Quiquet & Amaelle Landais & Barbara Stenni & David J. Wilson & Mirko Severi & Robert Mulvaney & Frank Wilhelms & Carlo Barbante & Massimo Frezzotti, 2022. "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7733:d:10.1038_s41586-018-0727-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.