IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7711d10.1038_s41586-018-0245-5.html
   My bibliography  Save this article

Flying couplers above spinning resonators generate irreversible refraction

Author

Listed:
  • Shai Maayani

    (Faculty of Mechanical Engineering, Technion)

  • Raphael Dahan

    (Faculty of Mechanical Engineering, Technion)

  • Yuri Kligerman

    (Faculty of Mechanical Engineering, Technion)

  • Eduard Moses

    (Faculty of Mechanical Engineering, Technion
    J-Rom)

  • Absar U. Hassan

    (CREOL/College of Optics and Photonics, University of Central Florida)

  • Hui Jing

    (Hunan Normal University)

  • Franco Nori

    (University of Michigan
    Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research)

  • Demetrios N. Christodoulides

    (CREOL/College of Optics and Photonics, University of Central Florida)

  • Tal Carmon

    (Faculty of Mechanical Engineering, Technion)

Abstract

Creating optical components that allow light to propagate in only one direction—that is, that allow non-reciprocal propagation or ‘isolation’ of light—is important for a range of applications. Non-reciprocal propagation of sound can be achieved simply by using mechanical components that spin1,2. Spinning also affects de Broglie waves 3 , so a similar idea could be applied in optics. However, the extreme rotation rates that would be required, owing to light travelling much faster than sound, lead to unwanted wobbling. This wobbling makes it difficult to maintain the separation between the spinning devices and the couplers to within tolerance ranges of several nanometres, which is essential for critical coupling4,5. Consequently, previous applications of optical6–17 and optomechanical10,17–20 isolation have used alternative methods. In hard-drive technology, the magnetic read heads of a hard-disk drive fly aerodynamically above the rapidly rotating disk with nanometre precision, separated by a thin film of air with near-zero drag that acts as a lubrication layer 21 . Inspired by this, here we report the fabrication of photonic couplers (tapered fibres that couple light into the resonators) that similarly fly above spherical resonators with a separation of only a few nanometres. The resonators spin fast enough to split their counter-circulating optical modes, making the fibre coupler transparent from one side while simultaneously opaque from the other—that is, generating irreversible transmission. Our setup provides 99.6 per cent isolation of light in standard telecommunication fibres, of the type used for fibre-based quantum interconnects 22 . Unlike flat geometries, such as between a magnetic head and spinning disk, the saddle-like, convex geometry of the fibre and sphere in our setup makes it relatively easy to bring the two closer together, which could enable surface-science studies at nanometre-scale separations.

Suggested Citation

  • Shai Maayani & Raphael Dahan & Yuri Kligerman & Eduard Moses & Absar U. Hassan & Hui Jing & Franco Nori & Demetrios N. Christodoulides & Tal Carmon, 2018. "Flying couplers above spinning resonators generate irreversible refraction," Nature, Nature, vol. 558(7711), pages 569-572, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0245-5
    DOI: 10.1038/s41586-018-0245-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0245-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0245-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7711:d:10.1038_s41586-018-0245-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.