IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v555y2018i7698d10.1038_nature25766.html
   My bibliography  Save this article

A programmable two-qubit quantum processor in silicon

Author

Listed:
  • T. F. Watson

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

  • S. G. J. Philips

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

  • E. Kawakami

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

  • D. R. Ward

    (University of Wisconsin-Madison)

  • P. Scarlino

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

  • M. Veldhorst

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

  • D. E. Savage

    (University of Wisconsin-Madison)

  • M. G. Lagally

    (University of Wisconsin-Madison)

  • Mark Friesen

    (University of Wisconsin-Madison)

  • S. N. Coppersmith

    (University of Wisconsin-Madison)

  • M. A. Eriksson

    (University of Wisconsin-Madison)

  • L. M. K. Vandersypen

    (QuTech and the Kavli Institute of Nanoscience, Delft University of Technology)

Abstract

A two-qubit quantum processor in a silicon device is demonstrated, which can perform the Deutsch–Josza algorithm and the Grover search algorithm.

Suggested Citation

  • T. F. Watson & S. G. J. Philips & E. Kawakami & D. R. Ward & P. Scarlino & M. Veldhorst & D. E. Savage & M. G. Lagally & Mark Friesen & S. N. Coppersmith & M. A. Eriksson & L. M. K. Vandersypen, 2018. "A programmable two-qubit quantum processor in silicon," Nature, Nature, vol. 555(7698), pages 633-637, March.
  • Handle: RePEc:nat:nature:v:555:y:2018:i:7698:d:10.1038_nature25766
    DOI: 10.1038/nature25766
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25766
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Thomas McJunkin & Benjamin Harpt & Yi Feng & Merritt P. Losert & Rajib Rahman & J. P. Dodson & M. A. Wolfe & D. E. Savage & M. G. Lagally & S. N. Coppersmith & Mark Friesen & Robert Joynt & M. A. Erik, 2022. "SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:555:y:2018:i:7698:d:10.1038_nature25766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.