IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v554y2018i7693d10.1038_nature25453.html
   My bibliography  Save this article

Structure of the mechanically activated ion channel Piezo1

Author

Listed:
  • Kei Saotome

    (Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla
    The Scripps Research Institute, La Jolla)

  • Swetha E. Murthy

    (Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla)

  • Jennifer M. Kefauver

    (Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla
    The Scripps Research Institute, La Jolla)

  • Tess Whitwam

    (Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla)

  • Ardem Patapoutian

    (Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla)

  • Andrew B. Ward

    (The Scripps Research Institute, La Jolla)

Abstract

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.

Suggested Citation

  • Kei Saotome & Swetha E. Murthy & Jennifer M. Kefauver & Tess Whitwam & Ardem Patapoutian & Andrew B. Ward, 2018. "Structure of the mechanically activated ion channel Piezo1," Nature, Nature, vol. 554(7693), pages 481-486, February.
  • Handle: RePEc:nat:nature:v:554:y:2018:i:7693:d:10.1038_nature25453
    DOI: 10.1038/nature25453
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25453
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingying Zhang & Grigory Maksaev & Peng Yuan, 2023. "Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Kenjiro Yoshimura & Kazuko Iida & Hidetoshi Iida, 2021. "MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Johanna L. Syrjänen & Max Epstein & Ricardo Gómez & Hiro Furukawa, 2023. "Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xin-yu He & Xiao Fan & Lei Qu & Xiang Wang & Li Jiang & Ling-jie Sang & Cheng-yu Shi & Siyi Lin & Jie-cheng Yang & Zuo-zhen Yang & Kai Lei & Jun-hong Li & Huai-qiang Ju & Qingfeng Yan & Jian Liu & Fud, 2023. "LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Francisco Andrés Peralta & Mélaine Balcon & Adeline Martz & Deniza Biljali & Federico Cevoli & Benoit Arnould & Antoine Taly & Thierry Chataigneau & Thomas Grutter, 2023. "Optical control of PIEZO1 channels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Amandeep Kaur & Madhu & Alok Sharma & Kashmir Singh & Santosh Kumar Upadhyay, 2023. "Exploration of Piezo Channels in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    9. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:554:y:2018:i:7693:d:10.1038_nature25453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.