IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v553y2018i7687d10.1038_nature25168.html
   My bibliography  Save this article

Clonal analysis of lineage fate in native haematopoiesis

Author

Listed:
  • Alejo E. Rodriguez-Fraticelli

    (Stem Cell Program, Boston Children’s Hospital
    Harvard University)

  • Samuel L. Wolock

    (Harvard Medical School)

  • Caleb S. Weinreb

    (Harvard Medical School)

  • Riccardo Panero

    (Molecular Biotechnology Center, University of Torino)

  • Sachin H. Patel

    (Stem Cell Program, Boston Children’s Hospital)

  • Maja Jankovic

    (Stem Cell Program, Boston Children’s Hospital)

  • Jianlong Sun

    (Stem Cell Program, Boston Children’s Hospital
    Harvard University
    School of Life Science and Technology, ShanghaiTech University)

  • Raffaele A. Calogero

    (Molecular Biotechnology Center, University of Torino)

  • Allon M. Klein

    (Harvard Medical School)

  • Fernando D. Camargo

    (Stem Cell Program, Boston Children’s Hospital
    Harvard University)

Abstract

Transposon tagging to clonally trace progenitors and stem cells provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.

Suggested Citation

  • Alejo E. Rodriguez-Fraticelli & Samuel L. Wolock & Caleb S. Weinreb & Riccardo Panero & Sachin H. Patel & Maja Jankovic & Jianlong Sun & Raffaele A. Calogero & Allon M. Klein & Fernando D. Camargo, 2018. "Clonal analysis of lineage fate in native haematopoiesis," Nature, Nature, vol. 553(7687), pages 212-216, January.
  • Handle: RePEc:nat:nature:v:553:y:2018:i:7687:d:10.1038_nature25168
    DOI: 10.1038/nature25168
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature25168
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature25168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Jung Tseng & Yuki Kageyama & Rebecca L. Murdaugh & Ayumi Kitano & Jong Hwan Kim & Kevin A. Hoegenauer & Jonathan Tiessen & Mackenzie H. Smith & Hidetaka Uryu & Koichi Takahashi & James F. Martin & , 2024. "Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Trent D. Hall & Hyunjin Kim & Mahmoud Dabbah & Jacquelyn A. Myers & Jeremy Chase Crawford & Antonio Morales-Hernandez & Claire E. Caprio & Pramika Sriram & Emilia Kooienga & Marta Derecka & Esther A. , 2022. "Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Natthakan Thongon & Feiyang Ma & Andrea Santoni & Matteo Marchesini & Elena Fiorini & Ashley Rose & Vera Adema & Irene Ganan-Gomez & Emma M. Groarke & Fernanda Gutierrez-Rodrigues & Shuaitong Chen & P, 2021. "Hematopoiesis under telomere attrition at the single-cell resolution," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Mina N. F. Morcos & Congxin Li & Clara M. Munz & Alessandro Greco & Nicole Dressel & Susanne Reinhardt & Katrin Sameith & Andreas Dahl & Nils B. Becker & Axel Roers & Thomas Höfer & Alexander Gerbaule, 2022. "Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. C. Biben & T. S. Weber & K. S. Potts & J. Choi & D. C. Miles & A. Carmagnac & T. Sargeant & C. A. Graaf & K. A. Fennell & A. Farley & O. J. Stonehouse & M. A. Dawson & D. J. Hilton & S. H. Naik & S. T, 2023. "In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Muran Xiao & Shinji Kondo & Masaki Nomura & Shinichiro Kato & Koutarou Nishimura & Weijia Zang & Yifan Zhang & Tomohiro Akashi & Aaron Viny & Tsukasa Shigehiro & Tomokatsu Ikawa & Hiromi Yamazaki & Mi, 2023. "BRD9 determines the cell fate of hematopoietic stem cells by regulating chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:553:y:2018:i:7687:d:10.1038_nature25168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.