IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v551y2017i7679d10.1038_nature24297.html
   My bibliography  Save this article

Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition

Author

Listed:
  • Matthew J. Hangauer

    (University of California San Francisco
    UCSF Diabetes Center, University of California San Francisco
    UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco)

  • Vasanthi S. Viswanathan

    (Broad Institute)

  • Matthew J. Ryan

    (Broad Institute)

  • Dhruv Bole

    (UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco)

  • John K. Eaton

    (Broad Institute)

  • Alexandre Matov

    (DataSet Analysis LLC)

  • Jacqueline Galeas

    (UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco)

  • Harshil D. Dhruv

    (The Translational Genomics Research Institute)

  • Michael E. Berens

    (The Translational Genomics Research Institute)

  • Stuart L. Schreiber

    (Broad Institute
    Howard Hughes Medical Institute
    Harvard University)

  • Frank McCormick

    (UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco)

  • Michael T. McManus

    (University of California San Francisco
    UCSF Diabetes Center, University of California San Francisco)

Abstract

Cancer persister cells, which survive cytotoxic treatments, are shown to be sensitive to inhibition of the lipid hydroperoxidase GPX4.

Suggested Citation

  • Matthew J. Hangauer & Vasanthi S. Viswanathan & Matthew J. Ryan & Dhruv Bole & John K. Eaton & Alexandre Matov & Jacqueline Galeas & Harshil D. Dhruv & Michael E. Berens & Stuart L. Schreiber & Frank , 2017. "Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition," Nature, Nature, vol. 551(7679), pages 247-250, November.
  • Handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24297
    DOI: 10.1038/nature24297
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature24297
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature24297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Keith Woodley & Laura S. Dillingh & George Giotopoulos & Pedro Madrigal & Kevin M. Rattigan & Céline Philippe & Vilma Dembitz & Aoife M. S. Magee & Ryan Asby & Louie N. van de Lagemaat & Christopher M, 2023. "Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Heike Chauvistré & Batool Shannan & Sheena M. Daignault-Mill & Robert J. Ju & Daniel Picard & Stefanie Egetemaier & Renáta Váraljai & Christine S. Gibhardt & Antonio Sechi & Farnusch Kaschani & Oliver, 2022. "Persister state-directed transitioning and vulnerability in melanoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Mihee Oh & Seo Young Jang & Ji-Yoon Lee & Jong Woo Kim & Youngae Jung & Jiwoo Kim & Jinho Seo & Tae-Su Han & Eunji Jang & Hye Young Son & Dain Kim & Min Wook Kim & Jin-Sung Park & Kwon-Ho Song & Kyoun, 2023. "The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Dadi Jiang & Youming Guo & Tianyu Wang & Liang Wang & Yuelong Yan & Ling Xia & Rakesh Bam & Zhifen Yang & Hyemin Lee & Takao Iwawaki & Boyi Gan & Albert C. Koong, 2024. "IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pranavi Koppula & Guang Lei & Yilei Zhang & Yuelong Yan & Chao Mao & Lavanya Kondiparthi & Jiejun Shi & Xiaoguang Liu & Amber Horbath & Molina Das & Wei Li & Masha V. Poyurovsky & Kellen Olszewski & B, 2022. "A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Bartosz Wiernicki & Sophia Maschalidi & Jonathan Pinney & Sandy Adjemian & Tom Vanden Berghe & Kodi S. Ravichandran & Peter Vandenabeele, 2022. "Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:551:y:2017:i:7679:d:10.1038_nature24297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.