IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v524y2015i7566d10.1038_nature14896.html
   My bibliography  Save this article

Structural basis for stop codon recognition in eukaryotes

Author

Listed:
  • Alan Brown

    (MRC Laboratory of Molecular Biology)

  • Sichen Shao

    (MRC Laboratory of Molecular Biology)

  • Jason Murray

    (MRC Laboratory of Molecular Biology)

  • Ramanujan S. Hegde

    (MRC Laboratory of Molecular Biology)

  • V. Ramakrishnan

    (MRC Laboratory of Molecular Biology)

Abstract

All eukaryotes utilize a single termination factor, eRF1, to halt translation when the ribosome encounters one of three possible stop codons; here electron cryo-microscopy structures of ribosome–eRF1 complexes in the process of recognizing each stop codon reveal how stop codons are discriminated from sense codons.

Suggested Citation

  • Alan Brown & Sichen Shao & Jason Murray & Ramanujan S. Hegde & V. Ramakrishnan, 2015. "Structural basis for stop codon recognition in eukaryotes," Nature, Nature, vol. 524(7566), pages 493-496, August.
  • Handle: RePEc:nat:nature:v:524:y:2015:i:7566:d:10.1038_nature14896
    DOI: 10.1038/nature14896
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature14896
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature14896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franziska Nadler & Elena Lavdovskaia & Angelique Krempler & Luis Daniel Cruz-Zaragoza & Sven Dennerlein & Ricarda Richter-Dennerlein, 2022. "Human mtRF1 terminates COX1 translation and its ablation induces mitochondrial ribosome-associated quality control," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Kotchaphorn Mangkalaphiban & Lianwu Fu & Ming Du & Kari Thrasher & Kim M. Keeling & David M. Bedwell & Allan Jacobson, 2024. "Extended stop codon context predicts nonsense codon readthrough efficiency in human cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Nikhil Bharti & Leonardo Santos & Marcos Davyt & Stine Behrmann & Marie Eichholtz & Alejandro Jimenez-Sanchez & Jeong S. Hong & Andras Rab & Eric J. Sorscher & Suki Albers & Zoya Ignatova, 2024. "Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic nonsense mutations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Ramona Weber & Leon Kleemann & Insa Hirschberg & Min-Yi Chung & Eugene Valkov & Cátia Igreja, 2022. "DAP5 enables main ORF translation on mRNAs with structured and uORF-containing 5′ leaders," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7566:d:10.1038_nature14896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.