IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v508y2014i7497d10.1038_nature13171.html
   My bibliography  Save this article

Superconducting quantum circuits at the surface code threshold for fault tolerance

Author

Listed:
  • R. Barends

    (University of California)

  • J. Kelly

    (University of California)

  • A. Megrant

    (University of California)

  • A. Veitia

    (University of California)

  • D. Sank

    (University of California)

  • E. Jeffrey

    (University of California)

  • T. C. White

    (University of California)

  • J. Mutus

    (University of California)

  • A. G. Fowler

    (University of California
    Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia)

  • B. Campbell

    (University of California)

  • Y. Chen

    (University of California)

  • Z. Chen

    (University of California)

  • B. Chiaro

    (University of California)

  • A. Dunsworth

    (University of California)

  • C. Neill

    (University of California)

  • P. O’Malley

    (University of California)

  • P. Roushan

    (University of California)

  • A. Vainsencher

    (University of California)

  • J. Wenner

    (University of California)

  • A. N. Korotkov

    (University of California)

  • A. N. Cleland

    (University of California)

  • John M. Martinis

    (University of California)

Abstract

A universal set of logic gates in a superconducting quantum circuit is shown to have gate fidelities at the threshold for fault-tolerant quantum computing by the surface code approach, in which the quantum bits are distributed in an array of planar topology and have only nearest-neighbour couplings.

Suggested Citation

  • R. Barends & J. Kelly & A. Megrant & A. Veitia & D. Sank & E. Jeffrey & T. C. White & J. Mutus & A. G. Fowler & B. Campbell & Y. Chen & Z. Chen & B. Chiaro & A. Dunsworth & C. Neill & P. O’Malley & P., 2014. "Superconducting quantum circuits at the surface code threshold for fault tolerance," Nature, Nature, vol. 508(7497), pages 500-503, April.
  • Handle: RePEc:nat:nature:v:508:y:2014:i:7497:d:10.1038_nature13171
    DOI: 10.1038/nature13171
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature13171
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature13171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksander Kubica & Michael Vasmer, 2022. "Single-shot quantum error correction with the three-dimensional subsystem toric code," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. J. Helsen & M. Ioannou & J. Kitzinger & E. Onorati & A. H. Werner & J. Eisert & I. Roth, 2023. "Shadow estimation of gate-set properties from random sequences," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Zi-Qi Wang & Yi-Pu Wang & Jiguang Yao & Rui-Chang Shen & Wei-Jiang Wu & Jie Qian & Jie Li & Shi-Yao Zhu & J. Q. You, 2022. "Giant spin ensembles in waveguide magnonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Antti Vepsäläinen & Roni Winik & Amir H. Karamlou & Jochen Braumüller & Agustin Di Paolo & Youngkyu Sung & Bharath Kannan & Morten Kjaergaard & David K. Kim & Alexander J. Melville & Bethany M. Niedzi, 2022. "Improving qubit coherence using closed-loop feedback," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Shingo Kono & Jiahe Pan & Mahdi Chegnizadeh & Xuxin Wang & Amir Youssefi & Marco Scigliuzzo & Tobias J. Kippenberg, 2024. "Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Sainan Huai & Kunliang Bu & Xiu Gu & Zhenxing Zhang & Shuoming An & Xiaopei Yang & Yuan Li & Tianqi Cai & Yicong Zheng, 2024. "Fast joint parity measurement via collective interactions induced by stimulated emission," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Eric Hyyppä & Suman Kundu & Chun Fai Chan & András Gunyhó & Juho Hotari & David Janzso & Kristinn Juliusson & Olavi Kiuru & Janne Kotilahti & Alessandro Landra & Wei Liu & Fabian Marxer & Akseli Mäkin, 2022. "Unimon qubit," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:508:y:2014:i:7497:d:10.1038_nature13171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.