IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v488y2012i7410d10.1038_nature11298.html
   My bibliography  Save this article

Parity–time synthetic photonic lattices

Author

Listed:
  • Alois Regensburger

    (Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
    Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany)

  • Christoph Bersch

    (Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
    Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany)

  • Mohammad-Ali Miri

    (CREOL, College of Optics and Photonics, University of Central Florida)

  • Georgy Onishchukov

    (Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany)

  • Demetrios N. Christodoulides

    (CREOL, College of Optics and Photonics, University of Central Florida)

  • Ulf Peschel

    (Institute of Optics, Information and Photonics, University of Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany)

Abstract

The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of ‘parity–time symmetry’ in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity–time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity–time symmetry to a new generation of multifunctional optical devices and networks.

Suggested Citation

  • Alois Regensburger & Christoph Bersch & Mohammad-Ali Miri & Georgy Onishchukov & Demetrios N. Christodoulides & Ulf Peschel, 2012. "Parity–time synthetic photonic lattices," Nature, Nature, vol. 488(7410), pages 167-171, August.
  • Handle: RePEc:nat:nature:v:488:y:2012:i:7410:d:10.1038_nature11298
    DOI: 10.1038/nature11298
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature11298
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature11298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danial Saadatmand & Aliakbar Moradi Marjaneh, 2022. "Scattering of the asymmetric $$\phi ^6$$ ϕ 6 kinks from a $${\mathcal{PT}\mathcal{}}$$ PT -symmetric perturbation: creating multiple kink–antikink pairs from phonons," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(9), pages 1-13, September.
    2. Jie Qian & C. H. Meng & J. W. Rao & Z. J. Rao & Zhenghua An & Yongsheng Gui & C. -M. Hu, 2023. "Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Vakhnenko, Oleksiy O. & Vakhnenko, Vyacheslav O. & Verchenko, Andriy P., 2023. "Dipole–monopole alternative as the precursor of pseudo-excitonic chargeless half-mode in an integrable nonlinear exciton–phonon system on a regular one-dimensional lattice," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Wu, Zhenkun & Yang, Kaibo & Ren, Xijun & Li, Peng & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Conical diffraction modulation in fractional dimensions with a PT-symmetric potential," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Zhu, Xing & Xiang, Dan & Zeng, Liangwei, 2023. "Fundamental and multipole gap solitons in spin-orbit-coupled Bose-Einstein condensates with parity-time-symmetric Zeeman lattices," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Shulin Wang & Chengzhi Qin & Weiwei Liu & Bing Wang & Feng Zhou & Han Ye & Lange Zhao & Jianji Dong & Xinliang Zhang & Stefano Longhi & Peixiang Lu, 2022. "High-order dynamic localization and tunable temporal cloaking in ac-electric-field driven synthetic lattices," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Avik Dutt & Luqi Yuan & Ki Youl Yang & Kai Wang & Siddharth Buddhiraju & Jelena Vučković & Shanhui Fan, 2022. "Creating boundaries along a synthetic frequency dimension," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Mu Yang & Hao-Qing Zhang & Yu-Wei Liao & Zheng-Hao Liu & Zheng-Wei Zhou & Xing-Xiang Zhou & Jin-Shi Xu & Yong-Jian Han & Chuan-Feng Li & Guang-Can Guo, 2022. "Topological band structure via twisted photons in a degenerate cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:488:y:2012:i:7410:d:10.1038_nature11298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.