IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v478y2011i7370d10.1038_nature10523.html
   My bibliography  Save this article

Spatio-temporal transcriptome of the human brain

Author

Listed:
  • Hyo Jung Kang

    (Yale University School of Medicine)

  • Yuka Imamura Kawasawa

    (Yale University School of Medicine)

  • Feng Cheng

    (Yale University School of Medicine)

  • Ying Zhu

    (Yale University School of Medicine)

  • Xuming Xu

    (Yale University School of Medicine)

  • Mingfeng Li

    (Yale University School of Medicine)

  • André M. M. Sousa

    (Yale University School of Medicine
    Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal)

  • Mihovil Pletikos

    (Yale University School of Medicine
    Graduate Program in Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia)

  • Kyle A. Meyer

    (Yale University School of Medicine)

  • Goran Sedmak

    (Yale University School of Medicine
    Graduate Program in Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia)

  • Tobias Guennel

    (Virginia Commonwealth University)

  • Yurae Shin

    (Yale University School of Medicine)

  • Matthew B. Johnson

    (Yale University School of Medicine)

  • Željka Krsnik

    (Yale University School of Medicine)

  • Simone Mayer

    (Yale University School of Medicine
    MSc/PhD Molecular Biology Program, International Max Planck Research School for Molecular Biology, 37077 Göttingen, Germany)

  • Sofia Fertuzinhos

    (Yale University School of Medicine)

  • Sheila Umlauf

    (Yale Center for Genome Analysis, Yale University School of Medicine)

  • Steven N. Lisgo

    (Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK)

  • Alexander Vortmeyer

    (Yale University School of Medicine)

  • Daniel R. Weinberger

    (Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health)

  • Shrikant Mane

    (Yale Center for Genome Analysis, Yale University School of Medicine)

  • Thomas M. Hyde

    (Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health
    The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus)

  • Anita Huttner

    (Yale University School of Medicine)

  • Mark Reimers

    (Virginia Commonwealth University)

  • Joel E. Kleinman

    (Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health)

  • Nenad Šestan

    (Yale University School of Medicine)

Abstract

Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.

Suggested Citation

  • Hyo Jung Kang & Yuka Imamura Kawasawa & Feng Cheng & Ying Zhu & Xuming Xu & Mingfeng Li & André M. M. Sousa & Mihovil Pletikos & Kyle A. Meyer & Goran Sedmak & Tobias Guennel & Yurae Shin & Matthew B., 2011. "Spatio-temporal transcriptome of the human brain," Nature, Nature, vol. 478(7370), pages 483-489, October.
  • Handle: RePEc:nat:nature:v:478:y:2011:i:7370:d:10.1038_nature10523
    DOI: 10.1038/nature10523
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature10523
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature10523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elaine T. Lim & Yingleong Chan & Pepper Dawes & Xiaoge Guo & Serkan Erdin & Derek J. C. Tai & Songlei Liu & Julia M. Reichert & Mannix J. Burns & Ying Kai Chan & Jessica J. Chiang & Katharina Meyer & , 2022. "Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Jun Ding & Jian Ji & Zachary Rabow & Tong Shen & Jacob Folz & Christopher R. Brydges & Sili Fan & Xinchen Lu & Sajjan Mehta & Megan R. Showalter & Ying Zhang & Renee Araiza & Lynette R. Bower & K. C. , 2021. "A metabolome atlas of the aging mouse brain," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Jingkuan Wei & Shaoxing Dai & Yaping Yan & Shulin Li & Pengpeng Yang & Ran Zhu & Tianzhuang Huang & Xi Li & Yanchao Duan & Zhengbo Wang & Weizhi Ji & Wei Si, 2023. "Spatiotemporal proteomic atlas of multiple brain regions across early fetal to neonatal stages in cynomolgus monkey," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Sheng Wang & Belinda Wang & Vanessa Drury & Sam Drake & Nawei Sun & Hasan Alkhairo & Juan Arbelaez & Clif Duhn & Vanessa H. Bal & Kate Langley & Joanna Martin & Pieter J. Hoekstra & Andrea Dietrich & , 2023. "Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Eva-Maria Stauffer & Richard A. I. Bethlehem & Lena Dorfschmidt & Hyejung Won & Varun Warrier & Edward T. Bullmore, 2023. "The genetic relationships between brain structure and schizophrenia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Marc P. Forrest & Marc Dos Santos & Nicolas H. Piguel & Yi-Zhi Wang & Nicole A. Hawkins & Vikram A. Bagchi & Leonardo E. Dionisio & Sehyoun Yoon & Dina Simkin & Maria Dolores Martin-de-Saavedra & Ruoq, 2023. "Rescue of neuropsychiatric phenotypes in a mouse model of 16p11.2 duplication syndrome by genetic correction of an epilepsy network hub," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Tianqi Liu & Ming Yuan & Hongyu Zhao, 2022. "Characterizing Spatiotemporal Transcriptome of the Human Brain Via Low-Rank Tensor Decomposition," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 485-513, December.
    12. Norman L. Lehman & Nathalie Spassky & Müge Sak & Amy Webb & Cory T. Zumbar & Aisulu Usubalieva & Khaled J. Alkhateeb & Joseph P. McElroy & Kirsteen H. Maclean & Paolo Fadda & Tom Liu & Vineela Gangala, 2022. "Astroblastomas exhibit radial glia stem cell lineages and differential expression of imprinted and X-inactivation escape genes," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    13. E. P. Tissink & A. A. Shadrin & D. Meer & N. Parker & G. Hindley & D. Roelfs & O. Frei & C. C. Fan & M. Nagel & T. Nærland & M. Budisteanu & S. Djurovic & L. T. Westlye & M. P. Heuvel & D. Posthuma & , 2024. "Abundant pleiotropy across neuroimaging modalities identified through a multivariate genome-wide association study," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Anna Pagliaro & Roxy Finger & Iris Zoutendijk & Saskia Bunschuh & Hans Clevers & Delilah Hendriks & Benedetta Artegiani, 2023. "Temporal morphogen gradient-driven neural induction shapes single expanded neuroepithelium brain organoids with enhanced cortical identity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Hyosang Kim & Doyoun Kim & Yisul Cho & Kyungdeok Kim & Junyeop Daniel Roh & Yangsik Kim & Esther Yang & Seong Soon Kim & Sunjoo Ahn & Hyun Kim & Hyojin Kang & Yongchul Bae & Eunjoon Kim, 2022. "Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:478:y:2011:i:7370:d:10.1038_nature10523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.