IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v461y2009i7261d10.1038_nature08449.html
   My bibliography  Save this article

Defining mechanisms that regulate RNA polymerase II transcription in vivo

Author

Listed:
  • Nicholas J. Fuda

    (Cornell University)

  • M. Behfar Ardehali

    (Cornell University)

  • John T. Lis

    (Cornell University)

Abstract

In the eukaryotic genome, the thousands of genes that encode messenger RNA are transcribed by a molecular machine called RNA polymerase II. Analysing the distribution and status of RNA polymerase II across a genome has provided crucial insights into the long-standing mysteries of transcription and its regulation. These studies identify points in the transcription cycle where RNA polymerase II accumulates after encountering a rate-limiting step. When coupled with genome-wide mapping of transcription factors, these approaches identify key regulatory steps and factors and, importantly, provide an understanding of the mechanistic generalities, as well as the rich diversities, of gene regulation.

Suggested Citation

  • Nicholas J. Fuda & M. Behfar Ardehali & John T. Lis, 2009. "Defining mechanisms that regulate RNA polymerase II transcription in vivo," Nature, Nature, vol. 461(7261), pages 186-192, September.
  • Handle: RePEc:nat:nature:v:461:y:2009:i:7261:d:10.1038_nature08449
    DOI: 10.1038/nature08449
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08449
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Liu & Donald Hansen & Elizabeth Eck & Yang Joon Kim & Meghan Turner & Simon Alamos & Hernan Garcia, 2021. "Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-26, May.
    2. Lin-Tai Da & Fátima Pardo Avila & Dong Wang & Xuhui Huang, 2013. "A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-9, April.
    3. Edward J Dougherty & Chunhua Guo & S Stoney Simons Jr & Carson C Chow, 2012. "Deducing the Temporal Order of Cofactor Function in Ligand-Regulated Gene Transcription: Theory and Experimental Verification," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-10, January.
    4. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    5. Zhdanov, Vladimir P., 2011. "Periodic perturbation of the bistable kinetics of gene expression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 57-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:461:y:2009:i:7261:d:10.1038_nature08449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.