IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v457y2009i7233d10.1038_nature07748.html
   My bibliography  Save this article

Friction laws at the nanoscale

Author

Listed:
  • Yifei Mo

    (Materials Science Program,)

  • Kevin T. Turner

    (Materials Science Program,
    Department of Mechanical Engineering,
    University of Wisconsin, Madison, Wisconsin 53706, USA)

  • Izabela Szlufarska

    (Materials Science Program,
    University of Wisconsin, Madison, Wisconsin 53706, USA)

Abstract

Friction at the nanoscale For large objects sliding over one another, the friction force is proportional to the true contact area between the two bodies — which is smaller than the apparent contact area because the surfaces are rough, consisting of a large number of smaller features (asperities) that actually make the contact. The situation for nanomaterials, however, has been unclear, since the continuum contact theory that can account for macroscale effects has been predicted to break down at the nanoscale. Using large-scale molecular dynamics simulations of scanning force microscopy experiments, Yifei Mo et al. show that, despite this, simple friction laws do apply at the nanoscale: the friction force depends linearly on the number of atoms, rather than the number of asperities, that are chemically interacting across the sliding interfaces.

Suggested Citation

  • Yifei Mo & Kevin T. Turner & Izabela Szlufarska, 2009. "Friction laws at the nanoscale," Nature, Nature, vol. 457(7233), pages 1116-1119, February.
  • Handle: RePEc:nat:nature:v:457:y:2009:i:7233:d:10.1038_nature07748
    DOI: 10.1038/nature07748
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07748
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Jousset & Gilda Currenti & Benjamin Schwarz & Athena Chalari & Frederik Tilmann & Thomas Reinsch & Luciano Zuccarello & Eugenio Privitera & Charlotte M. Krawczyk, 2022. "Fibre optic distributed acoustic sensing of volcanic events," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Caishan Yan & Hsuan-Yi Chen & Pik-Yin Lai & Penger Tong, 2023. "Statistical laws of stick-slip friction at mesoscale," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7233:d:10.1038_nature07748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.