IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v457y2009i7231d10.1038_nature07619.html
   My bibliography  Save this article

Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter

Author

Listed:
  • Michael J. Chen

    (Department of Biochemistry,
    Dartmouth Medical School, Hanover, New Hampshire 03755, USA
    Present address: Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.)

  • Tomomasa Yokomizo

    (Erasmus Medical Center)

  • Brandon M. Zeigler

    (Department of Biochemistry,)

  • Elaine Dzierzak

    (Erasmus Medical Center)

  • Nancy A. Speck

    (Department of Biochemistry,
    Present address: Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.)

Abstract

Blood lines How the blood system forms during embryonic development is a topic of intensive research, in part because of the potential importance of the process for regenerative medicine. Two main theories have emerged to explain the formation of the haematopoietic stem cells that eventually populate the adult born marrow. One idea is that the haematopoietic stem cell and the endothelial lineage arise independently from the mesoderm; the other is that some haematopoietic and endothelial lineages derive from a specialized progenitor called a haemangioblast. Three papers in this issue unify the two theories. Both are correct: the haemangioblast does generate haematopoietic cells, but via a haemogenic endothelium intermediate.

Suggested Citation

  • Michael J. Chen & Tomomasa Yokomizo & Brandon M. Zeigler & Elaine Dzierzak & Nancy A. Speck, 2009. "Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter," Nature, Nature, vol. 457(7231), pages 887-891, February.
  • Handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07619
    DOI: 10.1038/nature07619
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07619
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Feng & Shengnan Liu & Ming Su & Chunyu Song & Chenyu Lin & Fangying Zhao & Yang Li & Xianyan Zeng & Yong Zhu & Yu Hou & Chunguang Ren & Huan Zhang & Ping Yi & Yong Ji & Chao Wang & Hongtao Li & Mi, 2024. "TANGO6 regulates cell proliferation via COPI vesicle-mediated RPB2 nuclear entry," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Norika Liu & Naofumi Kawahira & Yasuhiro Nakashima & Haruko Nakano & Akiyasu Iwase & Yasunobu Uchijima & Mei Wang & Sean M. Wu & Susumu Minamisawa & Hiroki Kurihara & Atsushi Nakano, 2023. "Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Jong Geol Lee & Jung-Min Yon & Globinna Kim & Seul-Gi Lee & C-Yoon Kim & Seung-A Cheong & Hyun-Yi Kim & Jiyoung Yu & Kyunggon Kim & Young Hoon Sung & Hyun Ju Yoo & Dong-Cheol Woo & Jin Kyung Rho & Cha, 2024. "PIBF1 regulates trophoblast syncytialization and promotes cardiovascular development," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Alexander J. Hu & Wei Li & Calvin Dinh & Yongzhao Zhang & Jamie K. Hu & Stefano G. Daniele & Xiaoli Hou & Zixuan Yang & John M. Asara & Guo-fu Hu & Stephen R. Farmer & Miaofen G. Hu, 2024. "CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. C. Biben & T. S. Weber & K. S. Potts & J. Choi & D. C. Miles & A. Carmagnac & T. Sargeant & C. A. Graaf & K. A. Fennell & A. Farley & O. J. Stonehouse & M. A. Dawson & D. J. Hilton & S. H. Naik & S. T, 2023. "In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yoshiki Omatsu & Shota Aiba & Tomonori Maeta & Kei Higaki & Kazunari Aoki & Hitomi Watanabe & Gen Kondoh & Riko Nishimura & Shu Takeda & Ung-il Chung & Takashi Nagasawa, 2022. "Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Shambhu Yadav & Markus Waldeck-Weiermair & Fotios Spyropoulos & Roderick Bronson & Arvind K. Pandey & Apabrita Ayan Das & Alexander C. Sisti & Taylor A. Covington & Venkata Thulabandu & Shari Caplan &, 2023. "Sensory ataxia and cardiac hypertrophy caused by neurovascular oxidative stress in chemogenetic transgenic mouse lines," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Xia Chen & Peiliang Wang & Hui Qiu & Yonglin Zhu & Xingwu Zhang & Yaxuan Zhang & Fuyu Duan & Shuangyuan Ding & Jianying Guo & Yue Huang & Jie Na, 2022. "Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Zaniah N. Gonzalez Galofre & Alastair M. Kilpatrick & Madalena Marques & Diana Sá da Bandeira & Telma Ventura & Mario Gomez Salazar & Léa Bouilleau & Yvan Marc & Ana B. Barbosa & Fiona Rossi & Mariana, 2024. "Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Yumin Liu & Linjuan Shi & Yifan Chen & Sifan Luo & Yuehang Chen & Hongtian Chen & Wenlang Lan & Xun Lu & Zhan Cao & Zehua Ye & Jinping Li & Bo Yu & Elaine Dzierzak & Zhuan Li, 2024. "Autophagy regulates the maturation of hematopoietic precursors in the embryo," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Hubert Pakula & Mohamed Omar & Ryan Carelli & Filippo Pederzoli & Giuseppe Nicolò Fanelli & Tania Pannellini & Fabio Socciarelli & Lucie Van Emmenis & Silvia Rodrigues & Caroline Fidalgo-Ribeiro & Pie, 2024. "Distinct mesenchymal cell states mediate prostate cancer progression," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Grigorios Georgolopoulos & Nikoletta Psatha & Mineo Iwata & Andrew Nishida & Tannishtha Som & Minas Yiangou & John A. Stamatoyannopoulos & Jeff Vierstra, 2021. "Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    13. Patrick Coulombe & Grace Cole & Amanda Fentiman & Jeremy D. K. Parker & Eric Yung & Misha Bilenky & Lemlem Degefie & Patrick Lac & Maggie Y. M. Ling & Derek Tam & R. Keith Humphries & Aly Karsan, 2023. "Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:457:y:2009:i:7231:d:10.1038_nature07619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.