IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v453y2008i7193d10.1038_nature07039.html
   My bibliography  Save this article

Wound repair and regeneration

Author

Listed:
  • Geoffrey C. Gurtner

    (Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine)

  • Sabine Werner

    (Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), Schafmattstrasse 18, HPM D42)

  • Yann Barrandon

    (Centre Hospitalier Universitaire Vaudois, Chirurgie Éxperimentale, Pavillon 4
    École Polytechnique Fédérale Lausanne, School of Life Sciences/LDCS, Station 15)

  • Michael T. Longaker

    (Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine)

Abstract

The repair of wounds is one of the most complex biological processes that occur during human life. After an injury, multiple biological pathways immediately become activated and are synchronized to respond. In human adults, the wound repair process commonly leads to a non-functioning mass of fibrotic tissue known as a scar. By contrast, early in gestation, injured fetal tissues can be completely recreated, without fibrosis, in a process resembling regeneration. Some organisms, however, retain the ability to regenerate tissue throughout adult life. Knowledge gained from studying such organisms might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.

Suggested Citation

  • Geoffrey C. Gurtner & Sabine Werner & Yann Barrandon & Michael T. Longaker, 2008. "Wound repair and regeneration," Nature, Nature, vol. 453(7193), pages 314-321, May.
  • Handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature07039
    DOI: 10.1038/nature07039
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07039
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akio Nishijima & Akio Nishijima & Takahiro Fujimoto & Junko Nishijima & Akio Nishijima & Takahiro Fujimoto & Takamichi Hirata & Junko Nishijima, 2019. "A New Energy Device for Skin Activation to Acute Wound Using Cold Atmospheric Pressure Plasma- A Randomized Controlled Clinical Trial," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 21(1), pages 15494-15501, August.
    2. Li Yang & Dan Zhang & Wenjing Li & Hongbing Lin & Chendi Ding & Qingyun Liu & Liangliang Wang & Zimu Li & Lin Mei & Hongzhong Chen & Yanli Zhao & Xiaowei Zeng, 2023. "Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Chantal A. Ten Kate & Hilde J. H. Koese & M. Jenda Hop & André B. Rietman & René M. H. Wijnen & Marijn J. Vermeulen & Claudia M. G. Keyzer-Dekker, 2023. "Psychometric Performance of the Stony Brook Scar Evaluation Scale and SCAR-Q Questionnaire in Dutch Children after Pediatric Surgery," IJERPH, MDPI, vol. 21(1), pages 1-12, December.
    4. Yonger Xue & Yuebao Zhang & Yichen Zhong & Shi Du & Xucheng Hou & Wenqing Li & Haoyuan Li & Siyu Wang & Chang Wang & Jingyue Yan & Diana D. Kang & Binbin Deng & David W. McComb & Darrell J. Irvine & R, 2024. "LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Diana Boraschi & Dongjie Li & Yang Li & Paola Italiani, 2021. "In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
    6. Ishier Raote & Ann-Helen Rosendahl & Hanna-Maria Häkkinen & Carina Vibe & Ismail Küçükaylak & Mugdha Sawant & Lena Keufgens & Pia Frommelt & Kai Halwas & Katrina Broadbent & Marina Cunquero & Gustavo , 2024. "TANGO1 inhibitors reduce collagen secretion and limit tissue scarring," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Shiri Kuperman & Ram Efraty & Ina Arie & Arkadi Rahmanov & Marina Rahmanov Gavrielov & Matityahau Noff & Ron Fishel & Sandu Pitaru, 2020. "Examination of the Therapeutic Potential of Mouse Oral Mucosa Stem Cells in a Wound-Healing Diabetic Mice Model," IJERPH, MDPI, vol. 17(13), pages 1-10, July.
    8. Xiaoxue Han & Chaimongkol Saengow & Leah Ju & Wen Ren & Randy H. Ewoldt & Joseph Irudayaraj, 2024. "Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Sayan Chakraborty & Divyaleka Sampath & Melissa Ong Yu Lin & Matthew Bilton & Cheng-Kuang Huang & Mui Hoon Nai & Kizito Njah & Pierre-Alexis Goy & Cheng-Chun Wang & Ernesto Guccione & Chwee-Teck Lim &, 2021. "Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing," Nature Communications, Nature, vol. 12(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:453:y:2008:i:7193:d:10.1038_nature07039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.