IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v452y2008i7189d10.1038_nature06855.html
   My bibliography  Save this article

Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state

Author

Listed:
  • M. Dolev

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • M. Heiblum

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • V. Umansky

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • Ady Stern

    (Braun Center for Submicron Research, Weizmann Institute of Science)

  • D. Mahalu

    (Braun Center for Submicron Research, Weizmann Institute of Science)

Abstract

The fractional quantum Hall effect, where plateaus in the Hall resistance at values of h/ν e2 coexist with zeros in the longitudinal resistance, results from electron correlations in two dimensions under a strong magnetic field. (Here h is Planck’s constant, ν the filling factor and e the electron charge.) Current flows along the sample edges and is carried by charged excitations (quasiparticles) whose charge is a fraction of the electron charge. Although earlier research concentrated on odd denominator fractional values of ν, the observation of the even denominator ν = 5/2 state sparked much interest. This state is conjectured to be characterized by quasiparticles of charge e/4, whose statistics are ‘non-abelian’—in other words, interchanging two quasiparticles may modify the state of the system into a different one, rather than just adding a phase as is the case for fermions or bosons. As such, these quasiparticles may be useful for the construction of a topological quantum computer. Here we report data on shot noise generated by partitioning edge currents in the ν = 5/2 state, consistent with the charge of the quasiparticle being e/4, and inconsistent with other possible values, such as e/2 and e. Although this finding does not prove the non-abelian nature of the ν = 5/2 state, it is the first step towards a full understanding of these new fractional charges.

Suggested Citation

  • M. Dolev & M. Heiblum & V. Umansky & Ady Stern & D. Mahalu, 2008. "Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state," Nature, Nature, vol. 452(7189), pages 829-834, April.
  • Handle: RePEc:nat:nature:v:452:y:2008:i:7189:d:10.1038_nature06855
    DOI: 10.1038/nature06855
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06855
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. June-Young M. Lee & H.-S. Sim, 2022. "Non-Abelian anyon collider," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. J. Nakamura & S. Liang & G. C. Gardner & M. J. Manfra, 2022. "Impact of bulk-edge coupling on observation of anyonic braiding statistics in quantum Hall interferometers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:452:y:2008:i:7189:d:10.1038_nature06855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.